Publications

Publications are listed by year

Considerations for Monitoring Microplastics in the Non-Tidal Potomac River

The Interstate Commission on the Potomac River Basin’s 2022 Clean Water Act Section 106 Potomac Basin Water Quality Improvement grant included an activity to “assist water suppliers in VA, MD, and DC in developing microplastic sampling and analysis methodologies and conduct field sample collection.” This white paper, which explores the feasibility of a microplastic monitoring program in the nontidal Potomac basin, represents the output for this activity. Section 2 describes considerations for collecting and processing samples for microplastics analysis. Section 3 provides a brief explanation of analytical methods and quality control recommendations for the detection, quantification, and identification of microplastics.

Linking Altered Flow Regimes to Biological Condition: an Example Using Benthic Macroinvertebrates in Small Streams of the Chesapeake Bay Watershed

Regionally scaled assessments of hydrologic alteration for small streams and its effects on freshwater taxa are often inhibited by a low number of stream gages. To overcome this limitation, we paired modeled estimates of hydrologic alteration to a benthic macroinvertebrate index of biotic integrity data for 4522 stream reaches across the Chesapeake Bay watershed. Using separate random-forest models, we predicted flow status (inflated, diminished, or indeterminant) for 12 published hydrologic metrics (HMs) that characterize the main components of flow regimes. We used these models to predict each HM status for each stream reach in the watershed, and linked predictions to macroinvertebrate condition samples collected from streams with drainage areas less than 200 km2. Flow alteration was calculated as the number of HMs with inflated or diminished status and ranged from 0 (no HM inflated or diminished) to 12 (all 12 HMs inflated or diminished). When focused solely on the stream condition and flow-alteration relationship, degraded macroinvertebrate condition was, depending on the number of HMs used, 3.8–4.7 times more likely in a flow-altered site; this likelihood was over twofold higher in the urban-focused dataset (8.7–10.8), and was never significant in the agriculture-focused dataset. Logistic regression analysis using the entire dataset showed for every unit increase in flow-alteration intensity, the odds of a degraded condition increased 3.7%. Our results provide an indication of whether altered streamflow is a possible driver of degraded biological conditions, information that could help managers prioritize management actions and lead to more effective restoration efforts.

The report has been published in Environmental Management.

Rapid Response Survey of Cyanobacteria Toxin Levels Downstream of North Fork Shenandoah River Algal Bloom After Tropical Storm Ida, 2021

The Virginia Department of Health issued a Harmful Algae Bloom (HAB) Advisory for a 53-mile stretch of the North Fork of the Shenandoah River on August 10, 2021 (Figure 1, left). Samples from multi-species algal mats on the river bottom contained harmful levels of toxins produced by cyanobacteria. Three weeks later, Tropical Storm Ida passed over the North Fork, dumping torrential rain on the watershed. Sharply rising streamflows were expected to scour the benthic algal mats, potentially lysing their cells and releasing toxins as they washed downstream. The ICPRB’s Emergency River Spill Model (ERSM) indicated the scoured material’s leading edge would reach the Potomac River mainstem by September 2nd – 4th and Great Falls near Washington, D. C. by September 3rd – 6th.

Virginia Department of Environmental Quality staff confirmed the algal mats were scoured off the river bottom. Water samples collected by ICPRB at the Shenandoah River mouth indicate the storm’s high flows diluted the algal cells and their associated toxins to below-detection levels before they reached the Potomac River. If flows had been less intense, we hypothesize the scoured material and toxins could potentially have reached the Potomac River mainstem. More advanced flow modeling and additional sampling during algal blooms could better characterize the potential transport of scoured or senescing algal blooms in the Shenandoah River under different river conditions.

Scientist sends testing equipment attached to a rope over the side of a bridge. Shenandoah river is below the bridge.

Rt. 340 bridge over Shenandoah River near Harpers Ferry, WV

Potomac Basin Unreported Water Use

This flyer documents high-level results of one technical recommendation of the Potomac Basin Comprehensive Water Resources Plan’s water use and supplies challenge area: specifically, to “conduct additional studies on water uses that fall below state water reporting thresholds.”

Click here for the Supplemental Table of data used for the Potomac Basin Unreported Water Use report.

Nutrient limitation of phytoplankton in Chesapeake Bay: Development of an empirical approach for water-quality management

Understanding the temporal and spatial roles of nutrient limitation on phytoplankton growth is necessary for developing successful management strategies. Chesapeake Bay has well-documented seasonal and spatial variations in nutrient limitation, but it remains unknown whether these patterns of nutrient limitation have changed in response to nutrient management efforts. We analyzed historical data from nutrient bioassay experiments (1992–2002) and data from long-term, fixed-site water-quality monitoring program (1990–2017) to develop empirical approaches for predicting nutrient limitation in the surface waters of the mainstem Bay. Results from classification and regression trees (CART) matched the seasonal and spatial patterns of bioassay-based nutrient limitation in the 1992–2002 period much better than two simpler, non-statistical approaches. An ensemble approach of three selected CART models satisfactorily reproduced the bioassay-based results (classification rate = 99%). This empirical approach can be used to characterize nutrient limitation from long-term water-quality monitoring data on much broader geographic and temporal scales than would be feasible using bioassays, providing a new tool for informing water-quality management. Results from our application of the approach to 21 tidal monitoring stations for the period of 2007–2017 showed modest changes in nutrient limitation patterns, with expanded areas of nitrogen-limitation and contracted areas of nutrient saturation (i.e., not limited by nitrogen or phosphorus). These changes imply that long-term reductions in nitrogen load have led to expanded areas with nutrient-limited phytoplankton growth in the Bay, reflecting long-term water-quality improvements in the context of nutrient enrichment. However, nutrient limitation patterns remain unchanged in the majority of the mainstem, suggesting that nutrient loads should be further reduced to achieve a less nutrient-saturated ecosystem.

Published in the Journal of Water Research, Volume 188, January 2021:
https://doi.org/10.1016/j.watres.2020.116407

Potomac River Water Quality at Great Falls: 1940 – 2019

The U.S. Army Corps of Engineers operates Washington Aqueduct and provides drinking water to the Washington, D.C. area. Washington Aqueduct routinely samples its source of water, the Potomac River. Each year, it reports the monthly averages for basic water parameters and several pollutants and metals. Reports since 2001 are available online. Reports from 1905 to 2000, however, had limited distribution and their legibility has faded over time.

Dr. Norbert A. Jaworski recognized the historical value of these reports. To prevent their loss, he digitized the monthly values for several parameters. The Interstate Commission on the Potomac River Basin (ICPRB) later updated his dataset through 2019 and checked the entered data for accuracy. This report focuses on changes in temperature, hardness, pH, total solids, chloride, nitrate, and sulfate over the 80 years since ICPRB was formed in 1940. Visual representations (“heatmaps”) and trend analysis show significant increasing trends in all these parameters except nitrate. The report is intended to introduce the historical Washington Aqueduct water quality data to a broader audience and highlight their potential value to Potomac studies.

The Supplemental Materials document contains additional graphical representations of the data.

See the video summary of the report:

2020 Washington Metropolitan Area Drought Exercise

This report describes activities conducted during the 2020 drought exercise. The exercise was virtual, and took place on Monday, Tuesday, and Wednesday, November 16-18, from 7:30 AM to 4:00 PM.
Communications during the exercise were via telephone, email, and Microsoft Teams Meeting, and all
operations were “simulated.” Twice daily email reports were sent out to stakeholders reporting on current flow and demand conditions and on simulated operations. The exercise included two special events:

  • An actual test release from Little Seneca Reservoir, which was conducted over an approximately
    12-hour period, beginning at 10:00 AM on Tuesday, November 17.
  • A webinar by Hazen & Sawyer on the use of the Potomac OASIS model to provide probabilistic
    information on future streamflows and reservoir storage levels. A PDF of the webinar on forecast informed reservoir operations is available.

Learn more about previous drought exercises and the ICPRB’s Section for Cooperative Water Supply Operations on the Potomac on the Drought Monitoring and Operations page.

Disentangling the potential effects of land‐use and climate change on stream conditions

Land‐use and climate change are significantly affecting stream ecosystems, yet understanding of their long‐term impacts is hindered by the few studies that have simultaneously investigated their interaction and high variability among future projections. We modeled possible effects of a suite of 2030, 2060, and 2090 land‐use and climate scenarios on the condition of 70,772 small streams in the Chesapeake Bay watershed, United States. The Chesapeake Basin‐wide Index of Biotic Integrity, a benthic macroinvertebrate multimetric index, was used to represent stream condition. Land‐use scenarios included four Special Report on Emissions Scenarios (A1B, A2, B1, and B2) representing a range of potential landscape futures. Future climate scenarios included quartiles of future climate changes from downscaled Coupled Model Intercomparison Project ‐ Phase 5 (CMIP5) and a watershed‐wide uniform scenario (Lynch2016). We employed random forests analysis to model individual and combined effects of land‐use and climate change on stream conditions. Individual scenarios suggest that by 2090, watershed‐wide conditions may exhibit anywhere from large degradations (e.g., scenarios A1B, A2, and the CMIP5 25th percentile) to small degradations (e.g., scenarios B1, B2, and Lynch2016). Combined land‐use and climate change scenarios highlighted their interaction and predicted, by 2090, watershed‐wide degradation in 16.2% (A2 CMIP5 25th percentile) to 1.0% (B2 Lynch2016) of stream kilometers. A goal for the Chesapeake Bay watershed is to restore 10% of stream kilometers over a 2008 baseline; our results suggest meeting and sustaining this goal until 2090 may require improvement in 11.0%–26.2% of stream kilometers, dependent on land‐use and climate scenario. These results highlight inherent variability among scenarios and the resultant uncertainty of predicted conditions, which reinforces the need to incorporate multiple scenarios of both land‐use (e.g., development, agriculture, etc.) and climate change in future studies to encapsulate the range of potential future conditions. DOI link: https://doi.org/10.1111/gcb.14961

A water quality binning method to infer phytoplankton community structure and function

Aspects of phytoplankton community structure (e.g., taxonomic composition, biomass) and function (e.g., light adaptation, net oxygen production, exudation) can be inferred with a binning method that uses water transparency (Secchi depth), dissolved inorganic nitrogen, and ortho-phosphate to classify phytoplankton habitat conditions in the surface mixed layer. The method creates six habitat categories, forming a disturbance scale from turbid, nutrient-enriched waters (“degraded”) to clear waters with bloom-limiting nutrient concentrations (“reference”). Across this disturbance scale, estuarine phytoplankton exhibit strong differences in chlorophyll a, count-based biomass, trophic mode, average cell size, photopigment cell content, taxonomic dominance, and the frequency of algal blooms. Differences in ambient dissolved oxygen and dissolved organic carbon are also observed. Two alternate states are apparent, separated primarily by water transparency, or clarity.Water transparency determines cellular light-adaptation and the potential for photosynthesis and growth; nutrient concentrations determine how much of that potential can be realized if and when light becomes available. In Chesapeake Bay, Secchi depth thresholds separating the two states are 0.7–0.9 m in shallow, well-mixed, low salinity waters and 1.2–2.1 m in deeper, stratified, higher salinity waters. The water quality binning method offers a conceptual framework that can be used to infer the overall state of a phytoplankton population more accurately than chlorophyll a alone.

The article was published in Estuaries and Coasts (2020). DOI link: https://doi.org/10.1007/s12237-020-00714-3. Please contact us for a full copy of the report.

 

Assessing the effectiveness of riparian buffers for reducing organic nitrogen loads in the Coastal Plain of the Chesapeake Bay watershed using a watershed model

Riparian buffers are an important conservation practice to mitigate water quality degradation in the Coastal Plain of the Chesapeake Bay watershed (CBW). Although forested and grassed riparian buffers have been implemented in this region through government programs, the impacts of riparian buffers on water quality have been rarely examined. The objective of this study was to assess the long-term effects of riparian buffers to improve water quality in the Coastal Plain of the CBW. A watershed model, Soil and Water Assessment Tool (SWAT), was employed for this study. Considering impacts of model uncertainty (i.e., equifinality) on the effectiveness of riparian buffers, we adopted all parameter sets that produced acceptable simulation results. Multiple riparian buffer implementation scenarios were developed to generate the baseline condition on total organic nitrogen (TON) loads without riparian buffers and examine variation of TON loads with areal coverage of riparian buffers. Through the calibration processes, a total of 235 acceptable parameter sets were identified and used to simulate TON loads. The simulation results indicated that riparian buffers significantly reduce TON loads. Without riparian buffers, annual TON loads from the 220 km2 study watershed were 18 to 34 metric tons, but declined to 8 to 21 metric tons with riparian buffers. The effectiveness of riparian buffers on reducing annual TON loads increased from 17% to 45% with an increase in the extent of riparian buffer implementation. The effectiveness of riparian buffers tended to be higher during early spring than other seasons as high soil water conditions promote occurrence of surface water flow and thus TON loads. Riparian buffers were more efficient on croplands than other land use types due to high soil nutrient levels caused by fertilizer applications. The effectiveness of riparian buffers differed considerably by parameter set. Thus, efforts to consider model uncertainty are important to provide better insight into the impacts of conservation practices. This study supports ongoing riparian buffer programs for the Mid-Atlantic Coastal Plain by demonstrating the effectiveness of riparian buffers and informing implementation guidelines.

Published in the Journal of Hydrology, Volume 585, June 2020: https://doi.org/10.1016/j.jhydrol.2020.124779