# Climate Change: Trends & Projections for the Potomac River Basin

Cherie Schultz, PhD

Director of Operations

Section for Cooperative Water Supply Operations on the Potomac (CO-OP)

Interstate Commission on the Potomac River Basin



## Climate change in the Potomac basin

- Global context
- Potomac basin projections
  - Getting wetter on average
- Water supply perspective
  - Understanding <u>extremes</u> is crucial



# Making sense of a changing climate

#### Certainties

- Temperatures are rising
- Precipitation is becoming more variable
- Sea levels are rising

### **Uncertainties**

- How far will temperatures increase?
- How will precipitation change in our region?
- How will river flows respond to the competing effects of rising temperatures and changing precipitation patterns?
- How will societies respond to the challenge of climate change?



### °C 2.0 Warming is unprecedented in more than 2000 years 1.5 Warmest multi-century period in more than 100,000 years 1.0 observed 0.5 - 0.2 reconstructed -0.5500 1000 1850 2020 1500

From IPCC Sixth Assessment Report

# Global surface temperature - historical

1.1° C rise from 1850-1900 (baseline period) to 2011-2020



## Global surface temperature - projections



From IPCC Sixth Assessment Report

How societies respond is represented by Shared Socioeconomic Pathways (SSPs)

- SSP5-8.5 Fossil-fueled development
- SSP3-7.0 Regional rivalry
- SSP2-4.5 Middle of the road
- SSP1-2.6 Sustainability
- SSP1-1.9 Sustainability



### Long-term water cycle variables changes for SSP2-4.5 (2081–2100 vs 1995–2014)





## Potomac basin climate

- Our focus is on
  - River flow at Little Falls (78% of DC metro region's water supply!)
  - Annual time step
- Data used
  - Historical data from Oregon State's PRISM¹
  - Future projections from CMIP5<sup>2</sup>

<sup>1</sup>Parameter-elevation Regressions on Independent Slopes Model <sup>2</sup>Coupled Model Intercomparison Project Phase 5



# Potomac basin annual temperature

- Historical
  - High in 1930's
  - Slight upward trend
- 2085 projected increases\* (°C)
  - RCP 2.6: +2.0
  - RCP 4.5: +3.1
  - RCP 8.5: +5.1



• PRISM historical → RCP 2.6 → RCP 4.5 → RCP 8.5



<sup>\*</sup>Ensemble 30-year mean projected increases for 2070-2099 over baseline period of 1897-1980

# Potomac basin annual precipitation

- Historical
  - Highly variable
  - Slight upward trend
- 2085 projected increases\*
  - RCP 2.6: +10%
  - RCP 4.5: +12%
  - RCP 8.5: +15%



PRISM historical → RCP 2.6 → RCP 4.5 → RCP 8.5



<sup>\*</sup>Ensemble 30-year mean projected increases for 2070-2099 over baseline period of 1897-1980

# Potomac River annual flow

(natural, above Little Falls dam)

- Historical
  - Highly variable
  - No discernable trend
- 2085 projected increases\*
  - RCP 2.6: +12%
  - RCP 4.5: +12%
  - RCP 8.5: +8%



• Flow historical → RCP 2.6 → RCP 4.5 → RCP 8.5



<sup>\*</sup>Ensemble 30-year mean projected increases for 2070-2099 over baseline period of 1897-1980

## Potomac River annual flow – extreme drought

## 2085 projected changes in 1st and 99th percentiles

- High temperature sensitivity scenario
  - RCP 2.6: -16% and +15%
  - RCP 4.5: -36% and +19%
  - RCP 8.5: -87% and +15%
- Medium temperature sensitivity scenario
  - RCP 2.6: +1% and +18%
  - RCP 4.5: -11% and +24%
  - RCP 8.5: -46% and +22%
- Low temperature sensitivity scenario
  - RCP 2.6: +16% and +21%
  - RCP 4.5: +12% and +29%
  - RCP 8.5: -7% and +30%

Extreme dry years:

1<sup>st</sup> percentile values
- high temperature sensitivity



Extreme wet years:

99<sup>th</sup> percentile values
- high temperature sensitivity





## Conclusion

#### • Results

- Competing effects of rising precipitation and rising temperature evident
- Most scenarios indicate that extreme drought in the Potomac basin will be more severe than experienced in the past

#### Needs

- Better estimation of temperature sensitivity of streamflows
- Curtailing of global GHG emissions crucial (avoidance of RCP8.5-like scenario)

Contact: cschultz@icprb.org

