

Eliminating PFAS: Advances in Destructive Technology

ICPRB Potomac River Conference September 22, 2022

Rosa Gwinn, PhD PG rosa.gwinn@aecom.com

Delivering a better world

Agenda

- PFAS in the One Water Cycle
- PFAS Treatment Approaches

 PFAS Separation Technologies
 PFAS Destruction Technologies

In this presentation, the identification of commercial treatment options is not an endorsement of any technology or approach.

Technology selection ALWAYS requires a project-specific evaluation.

PFAS in the One Water Cycle

Delivering a better world

PFAS: One Water Perspective

PFAS Sources

PFAS Impacts

PFAS Treatment Approaches

Delivering a better world

Technology Readiness Level Advancement

Reference: https://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf

PFAS Treatment Technologies

Ex-Situ		In-Situ
 Granular activated carbon Ion exchange resin Reverse osmosis, Nanofiltration Foam fractionation Novel sorbents Chemical precipitation and flocculation Electrocoagulation 	Separation	 Colloidal activated carbon Powdered sorbent Foam fractionation Phytoremediation Thermal desorption
 Thermal (incineration/ cement kiln) Advanced oxidation (SCWO) Electrochemical oxidation Plasma Sonolysis Mechanochemical degradation 	Destruction	 Chemical oxidation Chemical reduction Enzyme catalyzed oxidation Microbial degradation

Commercially available technologies

Developing technologies

A aecom.com

PFAS Separation Treatment Technology – Transfer PFAS

PFAS Separation Treatment Technology – Transfer PFAS

PFAS Separation Treatment Technology – Concentrate PFAS

PFAS Separation Treatment Technology – Concentrate PFAS

PFAS Separation Treatment Technology – Concentrate PFAS

DEXSORB+

PFAS Treatment via Separation and Destruction

PFAS Destruction: Lines of evidence checklist*

- ✓ Decrease in target PFAS concentrations in context of mass balance
 - Precursors and their transformation
 - Loss is not occurring (sorption, transfer, volatilization, dilution)
- ✓ Treatment mechanism consistent with previous studies
 - Mechanism supported by peer-reviewed publications
 - Detection of intermediates consistent with mechanism
 - Formation of fluoride
- ✓ Transformation products identified and quantified
 - Short-chain PFAS creation
 - Fluoride generation
 - Secondary water effects controlled

Destruction Treatment Technology - Thermal

- Thermal destruction is commercially available
 - Incinerators
 - Cement kilns
- Draft 2022 USEPA Guidance lists as viable disposal technology
- Usable for solid and liquid PFAS wastes
- Requires shipment to a fixed / permanent permitted facility
- High temperatures (>1,400 °C) necessary
- Questions have arisen about emissions from incomplete destruction and PFAS transformation

PFAS Destruction Treatment Technology – In Development

DoD funds research in PFAS destruction via:

- Supercritical Water Oxidation (SCWO)
- Electrochemical Oxidation
- Plasma
- Hydrated Electrons in UV/Sulfite System
- Thermal oxidation

USEPA's PFAS Innovative Treatment Team (PITT) identified:

- Supercritical Water Oxidation
- Electrochemical oxidation
- Pyrolysis and gasification
- Mechanochemical degradation

A aecom.com

Destruction Treatment Technology - Supercritical Water Oxidation

Raises water above its critical point (374 °C and 221 bar), injects air, rapidly oxidizes all organics

Treats both liquid and solid wastes; demonstrated to reduce PFAS concentrations by 99.99%

- Several systems are deployed; fullscale applications are being actively developed
- Requires high energy input
- Reactors get plugged/fouled
- Uncertainty on the fate of fluorine in SCWO treatment

Ongoing evaluations for cost, efficiency, safety, and demonstration of complete destruction

Image credit: https://www.epa.gov/sites/default/files/2021-01/documents/pitt_research_brief_scwo_final_jan_25_2021_508.pdf

즂 aecom.com

Destruction Treatment Technology - Electrochemical Oxidation

- Destroys PFAS via sequential, non-selective defluorination; target reductions of 99.99%
- Electrical current between anode and cathode creates oxidizing conditions
- Multiple concurrent designs field demonstrations
- Electrode chemistry varies—affects durability, costs

🔶 aecom.com

Destruction Treatment Technology - Plasma

Electrical discharge converts water into a plasma—a mix of highly reactive chemical species

Image credit: https://www.serdp-estcp.org/projects/details/790e2dda-1f7b-4ff5-b77e-08ed10a456b1/er20-5355-project-overview

- Rapid treatment of PFAS-laden liquid, such as Aqueous Film Forming Foam
- Demonstrated reduction in long-chain and precursors >99%
- In field demonstration stage
- Not viable for dilute PFAS, but for concentrates

PFAS Solution: Eliminate from cycle

Protect drinking water

- Design/build PFAS removal systems using separation technologies (GAC, IX-R, RO)
- Focus research on improved methods

Protect water resources

- Eliminate sources
- Intercept in-situ

Disrupt PFAS from discharges/ WWTPs

- Invoke industrial pretreatment
- Manage biosolids

Treat separated and removed PFAS-laden waste

- Manage disposal
- Focus on developing commercially effective destruction technologies

AECOM Delivering a better world

Rosa Gwinn, PhD, PG AECOM Global PFAS Technical Lead rosa.gwinn@aecom.com