Finding Forever Chemical Sources in the Proverbial Haystack

Pinpointing Potential Sources of PFAS in the Potomac River Watershed

Outline

- 1. State of PFAS regulation
- 2. Case Study: MWCOG Potential PFAS Source Inventory
 - 1. Background
 - 2. Applicable state law
 - 3. Inventory method overview
 - 4. Sample results
 - 5. Potential applications
- 3. Key takeaways
- 4. Useful resources

PFAS Background - Federal

CORONA ENVIRONMENTAL CONSULTING

PFAS Drinking Water Regulations by State

State -	Standards/Guidance			
Alaska	Non-MCL standard for combined 70 ppt for PFOA, PFOS			
California	Non-MCL standard for PFOA (10 ppt), PFOS (40 ppt)			
Connecticut	Non-MCL standard for combined 70 ppt for PFOA, PFOS			
Maine	Interim MCL of 20 ppt for PFOA, PFOS, PFHpA, PFHxS, PFNA, and PFDA combined until final MCL adopted			
Massachusetts	MCL for 6 PFAS combined: PFOA, PFOS, PFHxS, PFNA, PFHpA, PFDA			
Michigan	MCL for 7 PFAS: Gen X, PFBS, PFHxA, PFHxS, PFNA, PFOA, PFOS			
Minnesota	Guidance for PFOS, PFHxS, PFBA, PFBS			
New Hampshire	MCLs for PFNA, PFHxS, PFOA, PFOS			
New Jersey	MCL for PFOA			
New York	MCL for PFOS 10 ppt, PFOA 10 ppt			
North Carolina	Health advisory for Gen X			
Ohio	Non-MCL standards for Gen X, PFBS, PFHxS, PFNA			
	Non-MCL standard of 70 ppt for combined PFOA and PFOS			
Vermont	MCL for 5 PFAS combined: PFOA, PFOS, PFHpA, PFHxS, PFNA			
Washington	Non-MCL standard pre-proposal for PFBS, PFHxS, PFOA, PFOS, PFNA			

Metropolitan Washington Case Study

- Metropolitan Washington Council of Governments (COG) is an independent, nonprofit association that brings area water utilities together to address major regional issues in the District of Columbia, suburban Maryland, and Northern Virginia.
- Since 2015, utilities have worked together to develop a data system tool to house and update regional source water assessment data for the Potomac River in Maryland, Virginia, Pennsylvania and West Virginia.
- In 2020, COG and member utilities partnered with Corona to develop a preliminary inventory of potential PFAS sources.
- This was a first step in an ongoing effort to track, analyze, and assess the risk posed by potential sources of PFAS in the region.

State Action on PFAS: Maryland

Unregulated Contaminants Monitoring Rule (UCMR3)

• 42 water systems in MD and Washington, D.C. monitored for PFOA and PFOS between 2012 and 2015.

Maryland Dept. of Environment (MDE) Sampling

Phase 1 (September 2020 to February 2021)

- 137 water treatment plants sampled for 18+ PFAS
- 10% of systems sampled for 29 PFAS

Phase 2 (March - May 2021)

- 167 sites sampled for 18 PFAS
- PFOA+ PFOS detected in a little over 50% of aquifer samples

Phase 3 (August 2021 – Spring 2022)

- MDE monitoring additional CWS.
- Results expected to be published in late 2022/early 2023

State-Led Source Identification

 MDE has initiated a mapping effort to identify potential sources of PFAS in Maryland and prioritize water sources for PFAS sampling.

Regulatory Action

- MDE is currently using EPA health advisory level as its primary action level threshold until a Maximum Contaminant Level (MCL) is formally adopted by the EPA.
- MDE is considering proceeding ahead of the EPA in establishing an enforceable MCL for PFAS in drinking water.
- Plans to use PFAS-specific funding of Bipartisan Infrastructure Law to reduce exposure risk.

State Action on PFAS: Virginia General Assembly – Enacted in Jan 2020

House Bill 586

House Bill 1257

Convenes a State Workgroup

Workgroup must:

- Determine level of occurrence
- Identify possible sources
- Evaluate regulatory approaches
- Report its findings by Dec. 1st, 2021
- Workgroup may:
- Develop recommendations for maximum contaminant levels

Requires Board of Health to:

Adopt MCLs protective of public health for:

- PFOA, PFOS
- Other PFAS compounds
- Chromium-6
- 1,4 dioxane

Report MCL's established by VDH to Senate Com. by 10/1/21 Regulations to be effective 1/1/22

No funding provided by the State for these efforts; no comprehensive data on these contaminants

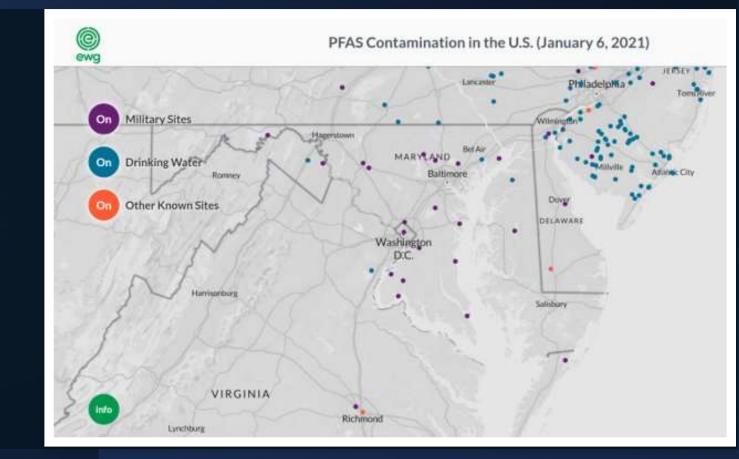
Method Overview

- 1. Define study area
- 2. Consider PFAS of interest
- 3. High-Risk Industry Sources
- 4. Data Discovery & Filtering
- 5. Manufacturing Facility Web Search

High-Risk Industry Sources

 Fire-fighting training facilities & other fire- fighting chemical use sites 	 Biosolids production & application sites 	 Carpet manufacturers
• Airports	 Chrome/metal plating facilities 	 Non-stick coating manufacturers
 Military facilities, especially Dept. of Defense 	 Polymer production and dyeing facilities 	 Outdoor & high-performance fabric & clothing manufacturers
 Incinerators (areas downwind) 	 Paper coating manufacturers 	 Food contact paper production facilities
 Major wastewater discharges 	 Landfills 	 Dry cleaners

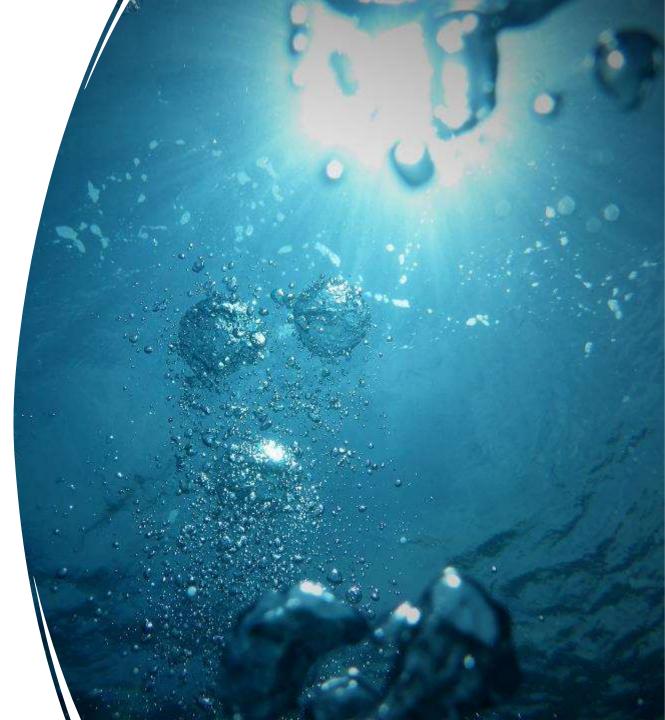
Key Data Resources


- 1. Federal Sources
 - a. Enforcement and Compliance History Online (ECHO) database (US EPA)
 - b. Fire stations and training sites (HIFLD)
 - c. Airports (FAA)
 - d. Military facilities (HIFLD)
 - e. Emergency Planning and Community Right to Know Act (Tier II) data,
 - f. Toxics Release Inventory data,
 - g. Toxics Substances Control Act data,
 - h. UCMR
- 2. State Data Sources
 - a. E.g., wastewater and biosolids, landfills, manufacturers (various types), dry cleaners

Key Data Resources

- 3. Specialized Data Sources
 - a. State PFAS assessments

or surveys


a. Environmental Working
 Group PFAS Contamination Site
 Tracker

Data Filtering Methods

1. Using provided fields

- a. Examples: Facility Type, Onsite
 Contaminants, Discharge Volume
- 2. By NAICS/SIC codes
- 3. Manual
- 4. No filter (all data relevant)
- 5. No filter (insufficient information)

Indirect Sources of PFAS

Types:

- 1. Wastewater facilities
- 2. Waste handlers (e.g. landfills, incinerators)
- 3. Biosolids application sites
- 4. Contaminated sites
- 5. Contaminated groundwater
- 6. Drycleaners
- Identifying indirect sources will benefit source water protection planning
- Water community members that conduct PFAS source inventories may be reluctant to label local wastewater facilities as "sources."

CORONA ENVIRONMENTAL CONSULTING

Direct Search for Known Manufacturers

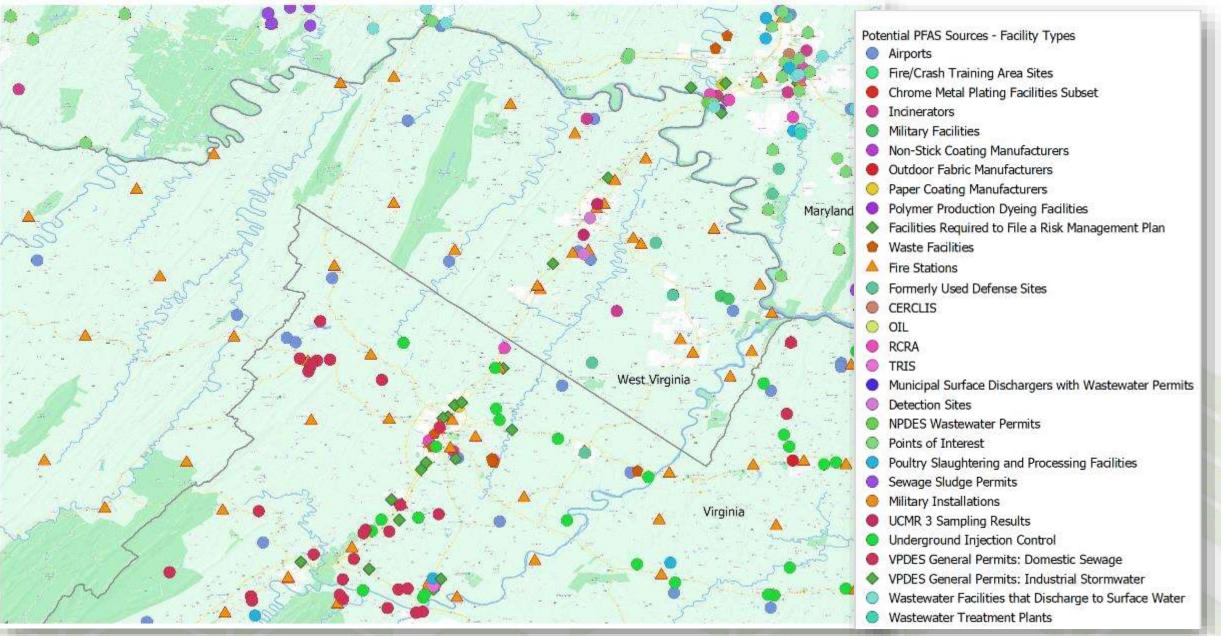
Searched primarily for manufacturing locations belonging to the following companies:

Dupont	3M	Daikin	Ciba
Chemours	Asahi Kasei	Sabic	Clariant
Solvay and Solvay Solexis	St. Gobain	Arkema	Dyneon

Step 1: Google Search

- 1. By company name and major brand names
- 2. By keyword:
 - Coatings
 - Plating
 - Chemical
 - Foams

Direct Search for Known Manufacturers


Step 2: Review State Databases

• Look for searchable state-owned databases that combine information from multiple programs (e.g., EPA FRS Database)

<u>Step 3</u>: Check company websites for manufacturing locations

Sample Results: Potomac River Area

New Federal Data Resources from USEPA

Ambient Environmental Sampling for PFAS Drinking Water Testing (UCMR) PFAS Dataset Drinking Water Testing (State) PFAS Dataset (Voluntary state reporting of PFAS sampling data) TSCA Chemical Data Reporting (CDR) PFAS Dataset Superfund Sites with PFAS Detections Dataset PFAS Discharge Monitoring dataset Federal Sites with Known or Expected Detections of PFAS Dataset ECHO PFAS Industry Sectors Dataset (aka Facilities that May be Handling PFAS) PFAS Transfers dataset PFAS Spills dataset (Subset of National Response Center Database) Toxics Release Inventory (TRI) On-site Releases PFAS dataset Toxics Release Inventory (TRI) Off-site Transfers PFAS dataset Toxics Release Inventory (TRI) Total Waste Managed PFAS dataset

Source: https://echo.epa.gov/tools/data-downloads/national-pfas-datasets

Potential Applications

- Support data-driven approach to managing source water threats
- Focus discussions with facility managers and regulators
- Regional data sharing
- Identify potential sampling locations
- Evaluate treatment options
- Identify potential investments that might be needed at sources in the watershed
- Estimate potential impact on the utility's budget and rates from possible sampling, treatment or mitigation approaches

Key Takeaways

- State & federal PFAS regulations are evolving rapidly
- Many states are doing sampling or encouraging water systems to sample
 - States requiring notifications when PFAS detected
 - Implications for public perception, communications
- Some states are also requiring wastewater systems to identify potential or known sources of PFAS.
- New data are becoming available rapidly (both sampling and source data)
- A comprehensive PFAS source inventory is a useful tool for regulatory, source water threat management, public relations, and cost-recovery purposes as well as designing monitoring programs to help isolate sources
- Identifying industry sources from raw data meant for other purposes is detailed and time-consuming, but possible

Resources

- AWWA Source Water Evaluation Guide for PFAS (login required)
- <u>ASDWA State Contaminants of Emerging Concern (CEC) Rule Development and</u>
 <u>Management Strategies Toolkit</u>
- EPA's PFAS Reporting Resources webpage
- <u>Echo.epa.gov/tools/data-downloads/national-pfas-datasets</u>
- AWWA Overview of Regulatory Activity (June 8, 2020)
- <u>Corona Environmental Consulting Jan 2020 PFAS webinar</u>

Contact: Jennifer Benjamin JBenjamin@coronaenv.com