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Abstract
Land-use and climate change are significantly affecting stream ecosystems, yet 
understanding of their long-term impacts is hindered by the few studies that have 
simultaneously investigated their interaction and high variability among future pro-
jections. We modeled possible effects of a suite of 2030, 2060, and 2090 land-use 
and climate scenarios on the condition of 70,772 small streams in the Chesapeake 
Bay watershed, United States. The Chesapeake Basin-wide Index of Biotic Integrity, 
a benthic macroinvertebrate multimetric index, was used to represent stream condi-
tion. Land-use scenarios included four Special Report on Emissions Scenarios (A1B, 
A2, B1, and B2) representing a range of potential landscape futures. Future climate 
scenarios included quartiles of future climate changes from downscaled Coupled 
Model Intercomparison Project - Phase 5 (CMIP5) and a watershed-wide uniform 
scenario (Lynch2016). We employed random forests analysis to model individual and 
combined effects of land-use and climate change on stream conditions. Individual sce-
narios suggest that by 2090, watershed-wide conditions may exhibit anywhere from 
large degradations (e.g., scenarios A1B, A2, and the CMIP5 25th percentile) to small 
degradations (e.g., scenarios B1, B2, and Lynch2016). Combined land-use and climate 
change scenarios highlighted their interaction and predicted, by 2090, watershed-
wide degradation in 16.2% (A2 CMIP5 25th percentile) to 1.0% (B2 Lynch2016) of 
stream kilometers. A goal for the Chesapeake Bay watershed is to restore 10% of 
stream kilometers over a 2008 baseline; our results suggest meeting and sustaining 
this goal until 2090 may require improvement in 11.0%–26.2% of stream kilometers, 
dependent on land-use and climate scenario. These results highlight inherent vari-
ability among scenarios and the resultant uncertainty of predicted conditions, which 
reinforces the need to incorporate multiple scenarios of both land-use (e.g., develop-
ment, agriculture, etc.) and climate change in future studies to encapsulate the range 
of potential future conditions.
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1  | INTRODUC TION

Land-use and climate change are two factors that have dramatically 
altered freshwater ecosystems across the globe (Carpenter, Stanley, 
& Zanden, 2011; Davidson, 2014; Meyer, Sale, Mulholland, & Poff, 
1999; Vörösmarty et al., 2010; Woodward, Perkins, & Brown, 2010), 
resulting in a disproportionately high number of imperiled species 
occupying these systems (Collen et  al., 2014; Strayer & Dudgeon, 
2010; Young, McCauley, Galetti, & Dirzo, 2016). Managers seeking 
to protect and restore freshwater ecosystems into the future will 
need to consider both factors to implement effective conservation 
programs. However, land-use and climate interactively affect eco-
systems (Northrup, Rivers, Yang, & Betts, 2019; Oliver & Morecroft, 
2014; Radinger et al., 2016), and thus, their individual and combined 
effects need to be simultaneously assessed (Carpenter et al., 2011; 
Meyer et al., 1999; Radinger et al., 2016).

Small streams are particularly susceptible to land-use and cli-
mate change (Meyer et al., 1999; Woodward et al., 2010). Land-use 
change has been shown to modify small stream chemistry, hydrology, 
geomorphology, and biology (Allan, 2004; Walsh et al., 2005), likely 
because of the strong coupling of streams to upstream landscapes 
(Hynes, 1975; Kärnä et al., 2019). Climate change also affects small 
streams by altering streamflow and temperature regimes (Dhungel, 
Tarboton, Jin, & Hawkins, 2016; Guse et al., 2015; Woodward et al., 
2010). The effects of land-use and climate change on small streams 
may have a proportionally large impact on global freshwater biodi-
versity given that small streams make up more than 88% of global 
freshwater stream length (≤3rd Strahler order streams, Downing 
et  al., 2012) and provide habitat to many freshwater taxa (Meyer 
et al., 1999).

Benthic macroinvertebrates are a major component of small 
stream communities providing important functions, including nu-
trient and energy transfer through food webs (Covich, Palmer, & 
Crowl, 1999). A single stream can contain hundreds of macroinver-
tebrate taxa with diverse life histories and tolerances to external 
stressors (Meyer et  al., 2007); as such, they are useful in assess-
ing cumulative stress and are critical bioindicators in many stream 
monitoring programs (Bonada, Prat, Resh, & Statzner, 2006; Carter, 
Resh, & Hannaford, 2017). Macroinvertebrates also can be sen-
sitive to the effects of climate change and land-use (Durance & 
Ormerod, 2007; Kuemmerlen et al., 2015; Mustonen et al., 2018; 
Nelson et  al., 2009; Pyne & Poff, 2017). Incorporating projected 
future land-use and climate change into assessments of macroin-
vertebrates and stream condition could not only improve our un-
derstanding of their effects but it also may improve regulatory and 
policy decisions.

Given the complex and unpredictable interactions between land-
use and climate projections, they are not precise predictions of future 
conditions but rather provide a range of possible futures and future 
uncertainties (Oliver & Morecroft, 2014; Van Vuuren & Carter, 2014). 
Therefore, studies on future biological conditions need to incorporate 
a multi-scenario approach that captures the range of possible future 
conditions. Here, our objectives were to (a) predict stream biological 

conditions as defined by use of the Chesapeake Basin-wide Index of 
Biotic Integrity (Chessie BIBI; Smith, Buchanan, & Nagel, 2017) under 
a suite of land-use and climate projections for the Chesapeake Bay 
watershed, and (b) use these predictions to determine the percent 
of stream length improvement needed under different scenarios to 
improve health and function of 10% of stream miles over a 2008 
baseline developed using the Chessie BIBI (Chesapeake Bay Program, 
2017b).

The Chesapeake Bay watershed lies in the northeast United 
States and by some predictions will experience a 2.0°C air tem-
perature increase by 2035, the greatest warming in the contiguous 
United States and a level that is two decades ahead of global aver-
age values (Dupigny-Giroux et al., 2018). Streams in this region may 
therefore experience the effects of climate change earlier than in 
other regions. Human population is also expected to increase by 2 
million in the watershed, from 18 to 20 million, by 2030 (Chesapeake 
Bay Program, 2017a), which may result in drastic changes to land-
use patterns in coming decades. Together, the predicted early onset 
of climatic and population changes in this region makes it an excel-
lent test case of how land-use and climate change may affect global 
freshwater biological conditions.

2  | MATERIAL S AND METHODS

2.1 | Study area

The Chesapeake Bay watershed drains approximately 168,000 km2 
of Delaware, Maryland, New York, Pennsylvania, Virginia, West 
Virginia, and the District of Columbia (Figure 1). Major river ba-
sins in the watershed include the Susquehanna, Potomac, James, 
Rappahannock, and York, which drain into the Chesapeake Bay, 
the largest estuary in the United States (Chesapeake Bay Program, 
2017a). The watershed currently has a population of over 18 million 
and includes the major cities Baltimore, Maryland; Washington, DC; 
Harrisburg, Pennsylvania; and Richmond, Virginia. Developed land 
cover comprised 11.0% and agriculture comprised 24.5% of the wa-
tershed in 2011 (2011 National Land Cover Database, NLCD, Homer 
et al., 2015).

2.2 | Datasets

2.2.1 | NHDPlusV2

We summarized stream condition indicators and assessed land-use 
and climate influences using geospatial data and geographic infor-
mation system (GIS) procedures. We used the 1:100,000 National 
Hydrography Dataset Version 2 (NHDPlusV2, McKay et  al., 2012) 
as a base GIS data layer to aggregate predictors. Key features of 
NHDPlusV2 include flowlines, local catchments, and value-added 
attributes, such as flowline length, all of which are connected by a 
common unique identifier.
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2.2.2 | The Chesapeake Basin-wide Index of Biotic 
Integrity (Chessie BIBI)

The Chessie BIBI provides a standardized measure of stream condi-
tion for the watershed (Smith et al., 2017). It was developed using 
stream benthic macroinvertebrate raw counts from 21,343 sam-
pling events collected by 28 state, county, regional, federal, and 
other monitoring programs from 1992 to 2015. The analysis fo-
cused on first- to fourth-order streams and excluded data collected 
in December, January, and February because of limited surveying. 
Smith et  al. (2017) standardized the dataset's macroinvertebrate 
taxonomy (e.g., excluded taxa enumerated by just one or two sam-
pling programs) and rarefied sample counts to approximately 100 
individuals per sample event prior to calculating richness and diver-
sity metrics. Smith et al. (2017) evaluated over 200 commonly used 
metrics (Barbour, Gerritsen, Snyder, & Stribling, 1999), and identi-
fied those most sensitive to degradation in stream habitat and water 
quality conditions in the watershed's 12 geographically distinct bi-
oregions. Each sample's metrics were scored on a continuous gra-
dient (0–100) and averaged to produce the final index score. High 
scores indicate macroinvertebrate communities like those in high 
quality, relatively undisturbed streams (i.e., reference). Final index 
scores were then assigned a categorical rating of Very Poor, Poor, 
Fair, Good, or Excellent based on thresholds derived from the 10th, 

25th, and 50th percentiles of BIBI scores in reference samples. See 
Smith et al., 2017 for a detailed description of the Chessie BIBI.

We used the family-level, bioregion-scale Chessie BIBI (Maloney, 
Smith, Buchanan, Nagel, & Young, 2018; Smith et  al., 2017). We 
chose this version because it (a) optimized the trade-off between 
taxonomic resolution and sample size, (b) adjusted for natural effects 
of geology, topography, and biogeography (i.e., bioregion), and (c) 
selected by stakeholders as their preferred stream health indicator 
(Buchanan, Maloney, Smith, Nagel, & Young, 2018). The Chessie BIBI 
was built 100 times using a bootstrap approach to account for slight 
differences in the taxa selected during the probabilistic rarefaction 
step, because it randomly selects which rare taxa are included in the 
BIBI calculation. The median result of those 100 runs was then used 
in modeling. In total, 21,266 stream sampling events were available 
with the family-level, bioregion-scale Chessie BIBI, of which 17,385 
were from our baseline period of January 1, 2000 to December 
31, 2011. This baseline was chosen to capture two complete sur-
veys of the watershed because each survey program takes 6 years 
to cover the watershed (Buchanan et al., 2018). We spatially linked 
each sample to an NHDPlusV2 catchment. We removed 14 events 
due to incomplete data and 1,458 sites with upstream drainages 
≥200 km2, the threshold for our definition of small streams, drop-
ping the sample size to 15,913. For NHDPlusV2 catchments with 
more than one Chessie BIBI score, we randomly selected one sample  

F I G U R E  1   Maps showing study area in relation to the mid-Atlantic United States (a) and bioregions (b) with Chessie BIBI scores 
categorized as Good, Fair, or Poor (c). Numbers within parentheses in the right panel indicate the number of samples in each category. 
Bioregion abbreviations: BAY = Chesapeake Bay, BLUE = Blue Ridge, CA = Central Appalachians, LNP = Lower-Northern Piedmont, 
MAC = Middle Atlantic Coastal Plain, NAPU = Northern Appalachian Plateau and Uplands, NCA = North Central Appalachians, 
NRV = Northern Ridge and Valley, PIED = Piedmont, SEP = Southeastern Plains, SGV = Southern Great Valley, SRV = Southern Ridge and 
Valley, and UNP = Upper-Northern Piedmont. State abbreviations: CT = Connecticut, NJ = New Jersey, NY = New York, PA = Pennsylvania, 
VA = Virginia, and WV = West Virginia
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(9,159 were duplicate events, leaving 6,754 spatially independent 
samples). Spatial clustering of the 6,754 samples was evident  
(Figure S1) because of high sampling frequency in the state of 
Maryland and Fairfax County, Virginia (n = 3,599). To reduce poten-
tial for spatial clustering to affect modeling, we subset data from 
the state of Maryland and Fairfax County, Virginia, to match the 
spatial density of unique samples throughout the rest of the water-
shed (0.0222 samples per km2). Thus, we randomly subsampled 545 
samples from Maryland and Fairfax County and added these to the 
3,155 samples from the rest of the Chesapeake Bay watershed for 
a total of 3,700 samples. These samples comprised 646 sites clas-
sified in Very Poor, 876 in Poor, 547 in Fair, 690 in Good, and 941 
in Excellent condition. To align with Chesapeake Bay Program goals 
(Chesapeake Bay Program, 2017b), the Very Poor category was 
aggregated into the Poor category and the Excellent category was 
aggregated into the Good category; ultimately producing the three 
categories used here: Poor, Fair, and Good (Figure 1). Each sample in 
the final dataset was linked to the baseline predictor dataset by the 
unique NHDPlusV2 identifier.

2.2.3 | Physical environmental dataset

We used data from StreamCat (Hill, Weber, Leibowitz, Olsen, & 
Thornbrugh, 2016), which contains 517 metrics representing both 
natural and anthropogenic landscape information summarized using 
NHDPlusV2 at local, cumulative upstream and riparian scales. We 
selected 15 uncorrelated (r  <  0.70) StreamCat metrics that were 
identified in literature as important surrogates of instream drivers of 
stream condition as they relate to habitat for benthic macroinverte-
brates, including:

•	 Upstream cumulative watershed area because it is strongly re-
lated to many stream variables, such as discharge, energy process, 
and biological communities (Vannote, Minshall, Cummins, Sedell, 
& Cushing, 1980);

•	 Elevation since it was important in previous modeling efforts of 
stream condition in the study area and because it correlates with 
slope and instream temperature (Maloney, Smith, et al., 2018);

•	 Seven soil predictors (mean season water depth (cm), mean or-
ganic matter content (% by weight), mean permeability (cm/hr), 
mean depth (cm) to bedrock, mean percent clay content, mean 
percent sand content, and mean soil erodibility (Kf) factor) be-
cause of the importance of soils and resultant drivers (e.g., sedi-
ment) on stream macroinvertebrates (Waters, 1995);

•	 Three measures of geochemical content in surface or near sur-
face geology—mean percent of lithological calcium oxide (CaO) 
because of its high correlation with many stream chemistry vari-
ables, mean lithological hydraulic conductivity (micrometers per 
second) because of its influence on rock/waters interaction, and 
mean lithological uniaxial compressive strength as a measure of 
susceptibility to weathering (megaPascals; Olson & Hawkins, 
2012) all of which affect local habitat for macroinvertebrates;

•	 Summaries of mean runoff (mm) and baseflow index because of 
the importance of hydrology to streams (Poff et al., 1997); and

•	 Mean composite topographic index (topographic wetness index), 
which relates upslope area to local slope and is used to quan-
tify topographic control on hydrological processes and estimate 
water accumulation—that is, valley bottoms have a high index 
whereas ridge and crests have a low index (Beven & Kirkby, 1979; 
Sörensen, Zinko, & Seibert, 2006). We hypothesized streams near 
or surrounded by ridges and crests would have less anthropo-
genic stress due to less accessibility or suitability, thus improving 
stream condition.

We used cumulative upstream watershed values for these predictors 
because local stream conditions are influenced by upstream catch-
ment conditions (Scott, Helfman, McTammany, Benfield, & Bolstad, 
2002) and the coarse resolution of many predictor layers can lead to 
inaccurate estimations when used at a local reach scale.

2.2.4 | Land-use

We assessed baseline land-use and land cover (LULC) conditions 
in 2005 and projected future LULC for 2030, 2060, and 2090, 
using an existing, consistent, annual LULC database from 1992 to 
2100. Land-use scenarios for the Chesapeake Bay watershed were 
extracted from existing landscape projections consistent with 
Intergovernmental Panel on Climate Change (IPCC) Special Report 
on Emissions Scenarios (SRES; Nakicenovic et al., 2000; Sohl et al., 
2014). SRES are based on assumptions related to projected demo-
graphic change, energy use and sources, technological innovation, 
economic development, climate change, and other socioeconomic 
and biophysical factors (Table 1). Integrated assessment models 
(IAMs) are used by the IPCC to quantitatively model interactions 
among these factors, including impacts on land-use (Moss et  al., 
2010); however, land-use projections from IAMs are spatially coarse 
and unsuitable for this scale of application. Global-level SRES pro-
jections produced by IAMs have been statistically and spatially 
downscaled to a regional level for the conterminous United States 
by Sleeter et al. (2012), while the Forecasting Scenarios of land-use 
(FORE-SCE) model was used to create spatially explicit projections 
consistent with SRES assumptions by Sohl et  al. (2014). For this 
paper, we use the four modeled SRES from Sohl et al. (2014; A1B, 
A2, B1, and B2), representing a range of potential landscape futures. 
There are no comparable landscape projections (e.g., Representative 
Concentration Pathways [RCP]) available for the Chesapeake Bay 
watershed with a similar level of thematic detail (17 land-use and 
land-cover classes, 14 of which were present in the watershed, 
Figures S2–S5), spatial resolution (250  m pixels), and broad geo-
graphic coverage. Here, the three mechanical disturbed categories 
were combined into one class, MechDist, yielding 12 land-cover cat-
egories (see Table S1 for definitions).

Sohl et  al. (2014) mapped historical LULC from 1992 to 2005 
using historical data sources where possible. For our baseline model, 
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we used 2005 because it was midpoint of our baseline stream condi-
tion period. LULC projection data were available from 2006 to 2100, 
and these data were spatially and thematically consistent with the 
1992–2005 historical data. We focused on 2030, 2060, and 2090 
time periods to ensure consistent temporal intervals and to coincide 
with available climate data. In total, we had 13 LULC rasters—the 
2005 baseline and three different future time period projections for 
each of the four scenarios. To optimize summation with NHDPlusV2, 
each LULC raster dataset (250 m pixels) was resampled to 30 m pixel 
resolution.

2.2.5 | Climate

Climatic conditions within the Chesapeake Bay watershed were 
incorporated by including measures of average air temperature 
(°C) and total precipitation (mm), both of which were calculated by 
season as defined by water year (January–March, April–June, July–
September, October–December) given the importance of hydrology 
on stream conditions (Poff et al., 1997).

For baseline estimates, we used monthly climate data from the 
Parameter-elevation Relationships on Independent Slopes Model 
(PRISM, 4 km grid pixel size, PRISM Climate Group, Oregon State 
University, http://www.prism​clima​te.org) from 2000 to 2011 to 
coincide with the baseline stream condition period. Monthly values 
were aggregated to seasonal mean temperature and seasonal total 
precipitation. These annual estimates were then averaged over 
2000–2011 to produce 4 km rasters of baseline seasonal average 
temperature and average total precipitation. Each 4 km raster was 
then resampled to 30 m to optimize summation with NHDPlusV2.

Climate change scenarios were calculated as departures from his-
torical average values using projected changes in seasonal average 
air temperature and total precipitation from Hay and McCabe (2019). 
This dataset summarized model projections of changes in seasonal 

temperature and precipitation from 122 statistically downscaled gen-
eral circulation models (GCMs) climate simulations included in the 
World Climate Research Program's Coupled Model Intercomparison 
Project 5 (CMIP5) scenarios. Each CMIP5 projection is composed of 
a number of different scenarios (i.e., RCP 4.5, 6, and 8.5). Climate 
conditions represented by these scenarios range from stabilized pop-
ulations after 2050, coupled with rapid development of more effi-
cient technological systems across the globe (RCP4.5), to globally 
increasing populations and regionally orientated economic develop-
ment (RCP8.5). For each downscaled GCM, the historical conditions  
(or current climatic conditions) are represented by climate model 
output for 1980–1999, whereas future climatic conditions are rep-
resented by model simulations for 2005–2099. Data for each of the 
122 climate projections were summarized to hydrologic response unit 
(HRU) polygons (Viger & Bock, 2014; Figure S6). For each climate 
projection, future temperature and precipitation changes were sum-
marized as departures from a 20 year historical period (1980–1999) 
for each HRU and aggregated as seasonal values as defined above. 
Departures of temperature and precipitation were expressed as mean 
seasonal departures for 19  year future periods centered on 2030, 
2060, and 2090. For temperature and precipitation, the 25th, 50th, 
and 75th percentiles of projected deviations of temperature (°C) and 
precipitation (mm) were computed for each HRU separately for each 
season and period (e.g., Figures S7–S12) and then rasterized at 30 m 
resolution to coincide with the resampled PRISM and other covariate 
data. We added these deviations to historical PRISM climate esti-
mates (1980–1999) to produce future projections of average seasonal 
temperature and total seasonal precipitation across the Chesapeake 
Bay watershed (n = 36 average temperature rasters and 36 total pre-
cipitation rasters). For a more detailed description of the CMIP5 pro-
cessing, see Appendix S1. Lynch, Seth, and Thibeault (2016) used the 
CMIP5 scenarios to develop projected seasonal changes in total pre-
cipitation and average temperature in the Northeast United States. 
We used these uniform, generalized projections to assess whether 

TA B L E  1   Assumptions associated with each of the IPCC SRES land cover projections used in this study

 

IPCC Special Report on Emissions Scenarios (SRES)

A1B A2 B1 B2

Economic or 
environmental

Economic growth Economic growth Environmental 
sustainability

Environmental sustainability

Globalization/
regionalization

Global convergence Regional development Global convergence Regional development

US population 461 million (2100) 628 million (2100) 461 million (2100) 366 million (2100)

US per capita GDP $146,807 (2100) $67,536 (2100) $92,086 (2100) $87,616 (2100)

Energy use Very high: balanced 
sources

High: regionally sourced 
including fossil fuels

Low: transition to post-
fossil fuel technology

Medium: regional, fossil fuel 
use declines over time

Technological  
change

Rapid pace, rapid 
diffusion

Slow pace, slow diffusion Medium pace, rapid 
diffusion

Medium pace, uneven 
diffusion

Resources and  
land-use

Active management 
rather than 
conservation

Uneven, but weak 
environmental concern, 
focus on consumption

Sustainable development, 
efficient resource use

Uneven, with local solutions 
to environmental  
protection

Note: See Nakicenovic et al. (2000) for additional details on SRES.

http://www.prismclimate.org
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responses among stream conditions were influenced by the localized 
effects of downscaling by adding the uniform projected seasonal 
changes in total precipitation and average temperature to all histori-
cal values (Lynch et al., 2016, see Table S2).

2.2.6 | Processing of predictor data

We first tabulated values for each NHDPlusV2 local catchment for 
each of the 13 LULC rasters, baseline 2000–2011 temperature and 
precipitation rasters, and 72 climate rasters from CMIP5 using GIS 
(ArcGIS 10.6, ESRI). For each LULC raster, local LULC was calculated 
as the percentage of total catchment area occupied by each LULC 
class. For each average temperature and total precipitation raster, 
local average temperature and total precipitation were summarized 
by within catchment averages. Subsequently, upstream accumulated 
values for each LULC and climate predictor were calculated using 
the NHDPlusV2 Catchment Attribute Allocation and Accumulation 
Tool (CA3TV2; http://www.horiz​on-syste​ms.com/NHDPl​us/NHDPl​
usV2_tools.php).

2.3 | Model development, validation, and 
interpretation

We used random forests analysis (Breiman, 2001) to develop a base-
line predictive model for the raw Chessie BIBI scores. Random for-
ests are well suited for predicting stream condition scores because 
they can use continuous and categorical predictors, often perform 
exceptionally when compared with other methods (Fernández-
Delgado, Cernadas, Barro, & Amorim, 2014), are relatively insensi-
tive to correlated covariates, and account for nonlinear relationships 
and complex interactions among predictors (Cutler et al., 2007). In 
total, 36 predictors were used (Table S1), including cumulative up-
stream watershed values for 15 natural predictors from StreamCat 
(Hill et  al., 2016), 12 LULC categories representing baseline 2005 
landscape conditions, seasonal average air temperature and total 
precipitation from PRISM, and dominant bioregion upstream of 
each stream reach given its importance in previous modeling efforts 
(Maloney, Smith, et al., 2018). The model was developed using the 
randomForest R package (Liaw & Wierner, 2002) with 1,000 trees 
and 19 variables randomly sampled at each split, which was optimal 
during tuning.

We divided the Chessie BIBI data into training (75%, n = 2,775) 
and test (25%, n = 925) datasets. Predictive performance was eval-
uated using model mean of squared residuals and percentage of 
explained variation in the training data. Since an important stake-
holder goal is determining stream length in either Poor, Fair, or 
Good condition, we also tested model performance by how well it 
correctly classified these groups (i.e., percent correctly classified, 
PCC) and calculated the Kappa statistic (values <0.00 indicate poor 
agreement, 0.00–0.20 slight agreement, 0.21–0.40 fair agreement, 
0.41–0.60 moderate agreement, 0.61–0.8 substantial agreement, 

and 0.81–1.00 almost perfect agreement; Landis & Koch, 1977). The 
test dataset was used to validate the model by calculating PCC and 
Kappa for the three-category classification.

Several covariates were correlated in the training dataset 
(r > .70; Table S3); however, to avoid potentially missing an import-
ant climate covariate during prediction, all variables were retained 
regardless of correlation because random forest models are robust 
to multicollinearity. That said, correlated variables may affect vari-
able importance plots and partial dependence plots (Molnar, 2019). 
Furthermore, land-use and climate factors affect stream conditions 
through complex and multivariate interactions, which inhibits draw-
ing inferences on functional relationships using partial dependence 
plots (Friedman, 2001). We used these plots only to interpret predic-
tor strength and to evaluate relationship forms between predictor 
variables and raw stream condition scores and caution against over-
interpreting these figures.

2.4 | Model application and prediction

The Chesapeake Bay watershed has 83,637 catchments represented 
in the NHDplusV2; of these 10,666 were larger than 200 km2 and 
2,199 had missing data and were not used here. We first used 
the model to predict scores and rating categories for the remain-
ing 70,772 small stream segments to provide a 2000–2011 base-
line estimate of watershed-wide conditions. We then predicted 
watershed-wide stream conditions under land-use only projections, 
under climate-only projections, and under combined land-use and 
climate projections for each time period (2030, 2060, and 2090). 
For land-use only stream condition predictions, we substituted 
the 2005 baseline LULC predictors with analogous data from each 
scenario (i.e., A1B, A2, B1, and B2) while keeping baseline climate 
(n = 12 scenarios). For climate only predictions, we substituted the 
2005 baseline seasonal average temperature and total precipita-
tion with analogous data from each projection (Lynch et  al., 2016 
and CMIP5 25th, 50th, and 75th percentiles) while keeping baseline 
LULC (n = 12 scenarios). For land-use and climate combined predic-
tions, we replaced both baseline LULC and climate predictors with 
analogous data from each climate projection and LULC projection 
for every possible combination (n = 48 scenarios). For the predicted 
2005 baseline and each of the 72 future predicted stream condi-
tions, we categorized predicted scores as either Poor, Fair, or Good 
using cutoffs of Smith et al. (2017).

To align with management goals, we linked predicted scores to 
the NHDPlusV2 Flowline dataset and calculated total stream kilo-
meters and percentages predicted as Poor, Fair, and Good. We also 
calculated total kilometers and percentages that were predicted in 
improved or degraded condition categories for each scenario rel-
ative to baseline conditions. By using three categories to classify 
stream condition, there are three possibilities for a stream to be 
predicted to a degraded (Good to Fair, Good to Poor, and Fair to 
Poor) or improved (Poor to Fair, Poor to Good, and Fair to Good) 
condition. We calculated the total increase or decrease of stream 

http://www.horizon-systems.com/NHDPlus/NHDPlusV2_tools.php
http://www.horizon-systems.com/NHDPlus/NHDPlusV2_tools.php
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kilometers and net change as the difference between these two 
values. An additive effect was calculated by summing net changes 
from associated land-use and climate only scenarios and an inter-
action outcome was determined as the difference in magnitude be-
tween this effect and the net change for each combined scenario.

All analyses and figure generation were performed in the R 
Statistical Software Package, version 3.6.0 (R Development Core 
Team, 2019).

3  | RESULTS

3.1 | Model validation and interpretation

The baseline random forests model had a mean of squared re-
siduals of 481.0 and explained 36.1% of variation in training data 
(n = 2,775). When classified into Poor, Fair, or Good conditions, the 
model correctly predicted 93.2% of Poor samples, 50.9% of Fair 
samples, and 94.4% of Good samples for an overall PCC of 84.9% 
and kappa statistic of 0.76 indicating substantial strength of agree-
ment (Table 2). For test data (n = 925), 76.1% of Poor samples, 22.6% 
of Fair samples, and 74.8% of Good samples were correctly classi-
fied for an overall PCC of 60.0% and kappa of 0.39 (fair agreement).

The top two most important predictors in our baseline model were 
topographic wetness index and developed land cover (Figure S13)  
with predicted Chessie BIBI raw score showing a rapid decrease 
between a 700 and 800 topographic wetness index and between 
0% and 20% developed land (Figure S14). Spring precipitation was 
within the top 10 most important variables; other climate variables 
were 13th or less most important (Figure S13). Predicted Chessie 
BIBI scores for all seasonal precipitation variables showed an ini-
tial increase and then the response either flattened (spring) or de-
creased (summer, winter, and fall, Figure S15). Predicted Chessie 
BIBI scores showed an initial flat response followed by a decrease 
for summer and spring temperatures, and initial increase response 
followed by no clear response to fall and winter temperatures 
(Figure S16).

3.2 | Model predictions

Mean and median values of model covariates associated with the 
Chessie BIBI training dataset samples (n = 2,775) aligned closely 

to those in the NHDplusV2 dataset (n = 70,772); however, maxi-
mum values were larger for many covariates in the NHDPlusV2 
dataset, especially for some land covers (e.g., mechanically dis-
turbed land, croplands, and wetlands, Table S1). Thus, we have 
confidence the model was trained on data representing all 
but extreme high cases. For the 70,772 NHDPlus V2 reaches, 
33.7% (23,825) were predicted as Good, 32.4% (22,934) as Fair, 
and 33.9% (24,013) as Poor condition. By stream length, of the 
114,552 kilometers, the model predicted 37.5% (42,921  km) as 
Good, 29.0% (33,226 km) as Fair, and 33.5% (38,405 km) as Poor 
(Table S4).

3.3 | Model predictions of stream kilometers in 
good condition

3.3.1 | Land-use only scenario predictions

Both economic growth (A1B and A2) scenarios showed a decrease 
in percentage of stream kilometers in Good condition for all three 
time periods with a maximum decrease by 2090 of 3.7% (4,286 km) 
under A1B and 7.1% (8,130 km) under A2 (Figure 2a; Table S4). The 
environmentally focused B1 scenario also predicted a decrease of 
streams in Good condition in each year, but by 2090 this decrease 
was only 1.1% (1,306  km). The most environmentally friendly sce-
nario, B2, predicted a small decrease of streams in Good condition 
by 2030 (0.7%, 746 km) and by 2090 it predicted a 0.3% decrease 
(342 km).

3.3.2 | Climate only scenario predictions

When the 25th percentile of CMIP5 scenario (CMIP5 p25) was used, 
streams in Good condition decreased 6.6% (7,526 km) in 2030, 7.2% 
(8,220 km) in 2060, and 7.3% (8,406 km) by 2090 (Figure 2b; Table S4).  
The median CMIP5 scenario (CMIP5 p50) predicted a decrease 
of 5.7% (6,554 km) by 2030 and a decrease of 6.1% (6,991 km) by 
2090. The 75th percentile CMIP5 (CMIP5 p75) scenario showed a 
decrease in stream kilometers in Good condition of 4.9% (5,573 km) 
by 2030 and a decrease of 5.0% (5,703 km) by 2090. The Lynch2016 
climate scenarios showed an increase of stream kilometers in Good 
condition in 2030 (0.03%, 31  km) and decreases by 2060 (0.6%, 
746 km) and 2090 (0.9%, 1,071 km).

Predicted

Training data Test data

Poor Fair Good PCC Poor Fair Good PCC

Poor 972 58 13 93.2 242 22 54 76.1

Fair 152 295 132 50.9 117 61 92 22.6

Good 0 65 1,088 94.4 39 46 252 74.8

      Total 84.9     Total 60.0

Abbreviation: PCC, percent correctly classified.

TA B L E  2   Confusion matrix for the 
training and test datasets when raw 
scores are categorized into Poor, Fair, or 
Good using cutoffs in Smith et al. (2017)
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3.3.3 | Combined land-use and climate scenario 
predictions

All combined land-use and climate scenarios predicted a decrease 
in stream kilometers in Good condition; however, this decrease 
dampened with increasing percentile and the Lynch2016 scenar-
ios (Figure 3; Table S4). The A2 climate scenarios generally pre-
dicted the largest decrease across all land-use scenarios with the 
CMIP5 p25 climate scenario showing the largest decrease (13.4%, 
15,344 km) in 2090; the A2 CMIP5 p50 and CMIP5 p75 combined 
scenarios predicted smaller decreases by 2090 (11.9% and 10.7%, 
respectively). Combined climate-environmental sustainability land-
use scenarios predicted the smallest decrease in stream kilometers 
in good condition in 2030 (B1), 2060 (B2), and 2090 (B2). Predicted 
changes in stream conditions were spatially variable across the wa-
tershed with different directional changes occurring in different 
areas within the watershed within a single scenario (Figure 4).

3.4 | Predicted stream kilometer change—2090

3.4.1 | Land-use only predictions

By 2090, the A2 scenario predicted the largest change in per-
centage of stream kilometers to a degraded condition (12.6%), 

followed by A1B (7.9%), B1 (4.0%), and then B2 (3.2%, Table 3). 
The opposite pattern was observed for percentage of stream kilo-
meters predicted in an improved condition (B2 > B1 > A1B > A2) 
resulting in a net decrease in stream condition being highest 
for A2 (11.5%), followed by A1B (7.0%), then B1 (2.5%) and B2 
(0.2%).

3.4.2 | Climate only predictions

By 2090, CMIP5 p25 predicted the largest amount of stream kilom-
eters in a degraded condition, followed by CMIP5 p50 and CMIP5 
p75, and then Lynch2016 (Table 3). The opposite pattern was ob-
served for stream kilometers predicted in improved conditions 
(Lynch2016 > CMIP5 p75 > CMIP5 p50 > CMIP5 p25), resulting in 
net change in decreased conditions being highest for CMIP5 p25 and 
lowest for the Lynch2016 scenario.

3.4.3 | Combined land-use and climate predictions

For all climate scenarios, by 2090, A2 combined scenarios pre-
dicted the most streams in degraded conditions followed by 
A1B, B1, and then B2; an opposite pattern was predicted for 
streams in improved conditions (B2 > B1 > A1B > A2, Table 3). 

F I G U R E  2   Predicted percentage of 
stream kilometers in Poor or Good condition 
under baseline and 2030, 2060, and 
2090 land-use projections (a) and climate 
projections (b). Fair condition not plotted  
for clarity, but results are in Table S4.  
Land-use projections are described in 
Table 1. Climate projection abbreviations: 
Lynch2016 = Lynch et al. (2016) 
projections, p25 = 25th percentile of 
CMIP5 projections, p50 = 50th percentile 
from CMIP5 projections and p75 = 75th 
percentile form the CMIP5 projections. 
Stream kilometers and percentages by 
projected category for each land-use and 
climate projection are in Table S4
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By 2090, the largest percentage of streams predicted to de-
graded conditions was under A2 CMIP5 p25 (19.6%), while the 
smallest percentage was under B2 Lynch2016 scenario (7.9%); 
conversely A2 CMIP5 p25 in 2090 predicted the smallest 
percentage of streams in improved conditions (3.4%) and B2 
Lynch2016 predicted the largest percentage of streams to im-
proved conditions (6.9%). By 2090, all combined land-use and 
climate scenarios predicted a net increase in stream kilometers 

in degraded conditions (16.2% under A2 CMIP p25 to 1.0% 
under B2 Lynch2016).

By 2090, the additive effect of individual scenarios for all com-
bined land-use climate scenarios predicted a net increase in stream 
kilometers in degraded conditions (Table 3). These additive effects 
were all larger than analogous net changes, indicating combining cli-
mate and land-use predicted a less degraded condition across the 
watershed (Table 3; Table S5).

F I G U R E  3   Predicted percentage of 
stream kilometers under Poor or Good 
condition for baseline and for each 
2030, 2060, and 2090 land-use and 
climate projection combination: A1B 
(a), A2 (b), B1 (c), B2 (d). Fair condition 
not plotted for clarity, but results 
are in Table S4. Climate projection 
abbreviations: Lynch2016 = Lynch et al., 
2016 projections, p25 = 25th percentile of 
CMIP5 projections, p50 = 50th percentile 
from CMIP5 projections, and p75 = 75th 
percentile form the CMIP5 projections. 
Stream kilometers and percentages by 
projected category for each land-use and 
climate projection are in Table S4

F I G U R E  4   Maps showing NHDplusV2 
catchments predicted to be in Poor, 
Fair, or Good condition under baseline 
conditions (a), A2 land-use p50 CMIP5 
climate 2090 projections (b), and B2 land-
use p50 CMIP5 climate 2090 projections 
(c). Upper focus area centers on region 
near Hornell, NY, lower focus area centers 
on region near York Pennsylvania, and 
Bel Air Maryland. Stream kilometers and 
percentages by projected category for 
each land-use and climate projection are 
in Table S4
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3.5 | Spatial patterns in stream condition 
changes—2090

Land-use only scenarios showed a wide range in how predicted 
changes in stream condition spatially organized across the water-
shed. Scenario A2 predicted widespread degradation in stream 
conditions, whereas B2 predicted widespread improvements in 
stream conditions by 2090; A1B and B1 scenarios predicted spatial 
patterns in between A2 and B2 (Figure S17). All climate only sce-
narios predicted improved stream conditions for northern and mid-
eastern portions of the watershed; the number of improved streams 

increased with CMIP5 quartiles and was highest for the Lynch2016 
scenario (Figure S18). All climate only scenarios predicted degraded 
stream conditions in south central portions of the watershed.

For all combined scenarios, by 2090, improved stream conditions 
were predicted more often in northern and far eastern portions 
(Delmarva Peninsula) of the watershed and degraded stream con-
ditions were predicted more often in central and southern portions 
(Figure 5; see Figures S19 and S20 for 2030 and 2060 maps). A1B 
and A2 predicted more widespread degradation in stream conditions 
than B1 and B2.

4  | DISCUSSION

Our results suggest a highly variable response of stream conditions 
in the Chesapeake Bay watershed to future potential land-use and 
climatic changes. Such variability was expected because land-use 
and climate scenarios are not exact predictions of future conditions 
but rather tools that can be used to examine various possible futures 
and associated uncertainties (Van Vuuren & Carter, 2014). We incor-
porated multiple future land-use and climate scenarios to capture 
the range of potential future stream conditions as well as highlight 
projection uncertainties. Although the A2 land-use scenario that 
projects a global population of 13 billion by 2100 is slightly outdated 
(Van Vuuren & Carter, 2014), we incorporated it as a worst-case sce-
nario. Furthermore, although global population may not increase to 
such a degree, such regional population increases may occur. The 
two million projected increase in population for the Chesapeake by 
2030 (~150,000/year, 0.9%, Chesapeake Bay Program, 2017a), if 
continued through 2100, would add ~12.5 million people to the wa-
tershed, a proportional increase near what is predicted in A2 (~3.6 
million/year, 1.1%). Global climate models also are highly variable 
and to reduce the need to independently test many global climate 
models we used quartiles of projections from the CMIP5 program. 
Weighting all scenarios equally, by 2090 our results suggest that 
changes to watershed-wide stream conditions could range from 
a 16.2% (A2 CMIP5 p25) to 1.0% (B2 Lynch2016) degradation of 
stream kilometers.

4.1 | Model interpretation and prediction

Model accuracy is an important component of any prediction study. 
Our accuracy diagnostics are similar to prediction-based ordinal 
stream condition studies performed previously within the study re-
gion (e.g., Maloney, Weller, Russell, & Hothorn, 2009) but slightly 
less than those from binomial stream condition studies both in-
side and outside the region (Hill et al., 2017; Maloney, Smith, et al., 
2018). Overall, this suggests our model is suitable for use in both 
prediction of current conditions of unsampled areas and under fu-
ture land-use and climate conditions. However, another issue is 
temporal consistency of prediction-based models. We are una-
ware of a study that has addressed how accurately models predict 

F I G U R E  5   Maps showing NHDPlusV2 catchments with 
predicted change in stream conditions in 2090 under CMIP5 p50 
climate projections and A1B (a), A2 (b), B1 (c), and B2 (d) land-use 
projections. Coding convention: “None” = a stream reach was 
predicted in the same condition in baseline and 2090 conditions 
(e.g., Poor to Poor), “Degraded” = a stream reach was predicted 
at a lower category in 2090 than baseline period (e.g., Good to 
Fair), and “Improved” = a stream reach was predicted at a higher 
category in 2090 than baseline period (e.g., Fair to Good). Similar 
maps for 2030 under CMIP5 p50 climate projections and 2060 
under CMIP5 p50 climate projections are in Figures S19 and S20. 
Stream kilometers and percentages by predicted stream condition 
change are in Table S5 and Table 3
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a response in different time periods in a single region, likely a re-
sult of limited long-term, large-scale data. Here, given the 6-year 
sampling cycle, we were able to evaluate two periods: 2000–2005 
and 2006–2011. Thus, to test temporal consistency of predictive 
landscape models, we built separate random forests models for (a) 
2000–2005 Chessie BIBI data with 2000–2005 PRISM precipita-
tion and temperature data and 2001 NLCD data (n  =  1,649) and  
(b) 2006–2011 Chessie BIBI data with 2006–2011 PRISM precipita-
tion and temperature data and 2006 NLCD data (n = 2,698). Models for 
both periods performed similarly (training data PCCs = 83.3 and 85.6, 
respectively; test data PCCs = 55.0 and 65.3, respectively; Table S6).  
Although only two periods, these results suggest robustness in tem-
poral accuracy; however, longer term data are needed to more rigor-
ously test temporal consistency.

Our prediction of 66.1% of small stream reaches in the Chesapeake 
Bay watershed currently in Fair or Good condition is slightly higher 
than the 64.0% predicted in Maloney, Smith, et  al. (2018). Close 
agreement was surprising given the latter used a finer base layer 
(1:24,000), different covariates, and Chessie BIBI data from 2004 to 
2008. Buchanan et al. (2018) more recently estimated streams in ap-
proximately 60.0% of the basin's area were in Fair or better condition 
using a combination of Maloney, Smith, et al. (2018) model results and 
monitoring data for 2006–2011. Together, all three provide support 
that the baseline number of stream reaches in Fair or better condition 
in the watershed was between 60.0% and 66.1% in the 2000–2011 
period. Here, we expanded upon these previous studies by estimating 
66.5% of stream kilometers in Fair/Good conditions in the 2000–2011 
period, a measure more directly aligned with the stated management 
goal.

Land-use and climate covariates were important drivers of 
stream condition. The importance of developed cover supports 
previous studies (Maloney, Schmid, & Weller, 2012; Roy, Rosemond, 
Leigh, Paul, & Wallace, 2003; Walsh et al., 2005) as does the im-
portance of agriculture cover (Hay_Pasture and Cropland; Allan, 
Erickson, & Fay, 1997) and forest cover (Maloney, Smith, et  al., 
2018). The high importance of upstream developed land as a driver 
was expected given it alters streams through modified flow and 
thermal regimes as well as increases in sediments, toxic contami-
nants, and other stressors (Walsh et al., 2005)—all of which nega-
tively affect benthic macroinvertebrates. Positive trends between 
precipitation and Chessie BIBI scores suggest that stream condi-
tions are higher in more humid areas. However, trends between 
temperature and Chessie BIBI scores suggest there may be an 
upper limit to increased temperature on stream condition. Many 
streams in the Chesapeake are cold water, which could be more 
sensitive than warmer systems to increasing temperature (Heino, 
Virkkala, & Toivonen, 2009). Together, the strong effects of land-
use and climate underscore the potential sensitivity of streams to 
changes in these features.

The importance of topographic wetness index and the rapid de-
crease in predicted Chessie BIBI suggests valleys and areas with 
lower upstream catchment slopes had a lower Chessie BIBI score, 
and thus more degraded conditions. Larger topographic wetness 

index values, indicative of valley bottoms, were in the southeast-
ern portion of the study area (Figure S21), largely the Southeastern 
Plains and Middle Atlantic Coastal Plains bioregions (Figure 1). In a 
contiguous US study, Hill et al. (2017) reported topographic wetness 
index was an important driver of stream conditions in the Coastal 
Plains region, which aligned with these two Chesapeake Bay water-
shed plains bioregions. This area also had disproportionate amounts 
of developed and agricultural lands (Figure S21); thus, there could 
be some interaction between topographic wetness index and an-
thropogenic stress occurring (i.e., these areas are more supportive 
of intensive agriculture and urban or suburban development).

4.2 | Land-use and climate only predictions

4.2.1 | Land-use only

Results from land-use only predictions suggest net changes in stream 
condition ranged from degradation in 11.5% to 0.2% of stream kilo-
meters. A net increase in streams in degraded condition from 2030 
to 2090 was predicted for both economic development scenarios 
(A1B and A2), and although at much smaller changes, also for the 
more environmentally focused B1 and B2 scenarios. Developed 
land more than doubled for A1B and A2 by 2090 (Table S7), which 
likely drove the degradation in stream conditions given its negative 
functional response with Chessie BIBI (Figure S14). B1 and B2 were 
projected to have a smaller increase in developed land than A1B or 
A2, which is a likely reason behind the relatively small increases in 
streams in degraded condition. An important concern for predict-
ing future conditions is that distributions of data in the predictive 
model cover the range in projected years. Our data for developed 
land in the training (Table S1) and baseline scenarios (Figure S22) 
overlapped all future scenario distributions, so the model was suit-
able to predict across the range of developed land in all scenarios.

4.2.2 | Climate only

Except for the Lynch2016 2030 scenario, all climate only sce-
narios projected a net degradation in stream conditions for the 
Chesapeake Bay watershed; however, the magnitude of degrada-
tion decreased with increasing percentiles of the downscaled cli-
mate change models (CMIP5 scenarios) and was smallest for the 
watershed-wide uniform scenarios (Lynch2016). Thus, the sce-
nario analyses suggest increasing precipitation may mollify the 
effects of increasing temperature in the future. The distribution 
of total precipitation in the training dataset overlapped those for 
baseline 2005 data, but baseline data were slightly higher than 
historical and all projections (Table S1, Figure S23). The distri-
bution of future temperature projections was shifted above the 
upper limits of the baseline data for all projections, especially by 
2090 (Table S1, Figure S24). Thus, due to potentially novel climate 
conditions in the future, our model may not effectively predict the 
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effects of lower precipitation projections and higher temperature 
projections especially for the later year (2090) and higher quartile 
(p75) scenarios.

We observed an effect of downscaling climate models on stream 
condition predictions with the regionally uniform climate scenario 
(Lynch et  al., 2016) showing a smaller net proportion of degraded 
stream kilometers than downscaled CMIP5 scenarios. Lynch2016 
projected slightly higher precipitation levels than the CMIP5 scenar-
ios but projected changes in temperature within the range of the 
CMIP5s (Figures S7–S12). Therefore, it is likely that local variation 
afforded by downscaled CMIP5 scenarios was behind these differ-
ences and highlights an importance of including downscaled data 
when appropriate.

4.2.3 | Land-use only versus climate only scenario 
predictions

By 2090, both land-use only and climate only predictions of water-
shed-wide stream conditions ranged from a small to large net in-
crease in degraded condition. Furthermore, possible future land-use 
under economic development scenarios had an amplifying pattern 
with increasing degraded condition in out years, whereas the effects 
of climate futures were relatively consistent across out years. This 
pattern was most evident with the A2 scenario as it projected half 
or less the net change than CMIP5 scenarios in 2030 but a higher 
net change by 2090. The lack of a climatic future trend may be a 
result of the distribution of baseline data, especially temperature, 
not encompassing futures. Also, developed land and cropland under 
A2 and precipitation and air temperature were projected to change 
dramatically by 2090. However, developed land was a more impor-
tant covariate in the model than any climate variable (Figure S13) and 
exhibited a strong negative functional relationship with the Chessie 
BIBI, while precipitation and temperature did not (Figures S14–S16). 
Environmentally sustainable scenarios predicted absolute changes 
below the range of changes under CMIP5 climate only scenarios, but 
similar to projections under Lynch2016. The magnitude of devel-
oped land cover changes under scenarios B1 and B2 was small and 
forest cover increased under B2 in 2060 and 2090, which resulted in 
fewer streams predicted to a degraded condition compared to those 
predicted to an improved condition in out years for these scenarios.

4.3 | Combined land-use and climate scenario 
predictions

The high variability observed with the individual scenarios car-
ried over to the combined scenario analyses which by 2090 also 
predicted watershed-wide stream conditions ranging from large 
increases in degraded conditions (combined economic develop-
ment scenarios) to small increases in degraded conditions (com-
bined Lynch2016 and B1 and B2 scenarios). Previous studies have 
documented variable effects of climate and land-use change on 

individual taxa (Krause et  al., 2019; Mantyka-Pringle, Martin, 
Moffatt, Linke, & Rhodes, 2014). However, these studies all fo-
cused on individual taxa or individual metrics and we are unaware 
of a previous study that has examined an index of stream con-
dition to global change. Previous studies are also largely limited 
in the number of land-use and climate scenarios tested. Here, we 
showed how including a suite of land-use and climate scenarios 
that bracket likely future conditions predicted different future 
stream conditions. Documenting this uncertainty is important not 
only to improve our basic understanding of how global change may 
affect stream conditions but also to aid in restoration and conser-
vation management efforts.

While patterns from individual scenarios carried over to com-
bined scenarios, all combined scenarios showed an interactive effect 
of land-use and climate change on watershed-wide stream condi-
tions. Nearly all combined scenarios revealed a response in stream 
condition that was different than the additive effects of land-use 
and climate. By 2090, all combined climate and land-use scenarios 
predicted a mediating effect with interaction outcomes of less de-
graded watershed-wide conditions. Other research has suggested an 
interactive effect of land-use and climate change on stream benthic 
macroinvertebrates (Kuemmerlen et al., 2015; Li, Zhang, Guo, Gao, & 
Wang, 2018). These results emphasize the need to acknowledge the 
interacting effects of land-use and climate when forecasting future 
environmental conditions and reflect a need to further investigate 
how these interactions may differ among areas with distinct abiotic 
conditions.

4.3.1 | Spatial patterns

Displayed graphically, predictions from combined land-use and 
climate scenarios identify geographic areas where climate change 
may mediate effects of land-use in the Chesapeake Bay watershed 
(e.g., north and middle eastern part of basin) and other areas where 
such effects of climate may magnify land-use effects (e.g., high de-
velopment scenario A2 in 2090, Figure 5). A spatial understanding 
of such interactive effects could be used by researchers, managers, 
and policy makers to minimize risk or take advantage of opportuni-
ties afforded by these interactions (Oliver & Moorecraft, 2014). For 
example, areas where climate has a larger mediating effect could be 
prioritized for restoration because climate may help amplify resto-
ration effects, whereas, areas predicted to experience a magnified 
effect of climate change may warrant strong intervention to stymie 
possible future loss and to realize restoration goals.

4.4 | Limitations of models

We acknowledge we were limited on available land-use and climate 
covariates, which may have affected the predictive baseline model 
and thus future predictions. Both were at coarse resolutions (land-
use = 250 m, climate = 800 m), which may not encapsulate changes 
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in land cover and climate variables that could be seen at finer scales. 
To facilitate summation of these factors with the NHDPlusV2 data-
set, we also resampled each to 30 m. Doing so enabled better sum-
mation for smaller catchments (e.g., enabled raster centroids to be 
placed within catchments); however, we acknowledge such a proce-
dure generated finer scaled rasters but not finer scaled representa-
tions of land cover.

We also acknowledge limitations in defining seasons by months 
defined by water years and there are other aggregation options (e.g., 
meteorological seasons). Any such aggregation is an oversimplifica-
tion of seasons in this area, which are likely not uniform but rather 
transitional based on spatial (e.g., latitude) and landscape (e.g., el-
evation) factors. Defining seasons that incorporate these factors 
would likely improve seasonal inference but is beyond the scope of 
the current study.

We also limited our study to using four SRES land-use projec-
tions (A1B, A2, B1, and B2) because these were available for our 
study area. Representative Concentration Pathways (RCP) 2.6, 4.5, 
6.0, and 8.5 and shared socioeconomic pathways (SSP) projections 
exist but are currently not available for the Chesapeake Bay water-
shed at similar spatial and thematic resolution. The development of 
spatially explicit scenarios that represent both climate and land-use 
is a highly time-consuming process (Van Vuuren & Carter, 2014); 
therefore, these data may not be available for this watershed for 
several years. To facilitate climate and land-use change studies, 
Van Vuuren and Carter (2014) reconciled the SRES with the newer 
RCP and SSP scenarios, suggesting A2 ≈ RCP 8.5 and SSP3, B2, or 
A1B ≈ RCP 6.0 and SSP2, and B1 ≈ RCP 4.5 and SSP1. Thus, our 
results should be robust to these more recent scenarios. We also 
note that land-use projections are based on existing information at 
the time of model development, and thus do not contain techno-
logical advances that lead to unexpected land-use changes, such 
as the development of shale oil and gas development that began 
in the northern portion of the watershed in 2010 (Maloney, Young, 
et al., 2018).

Optimally long-term biological, land-use, and climate data-
sets would be available to more definitively tease out effects of 
land-use and climate changes on biological process (Northrup 
et al., 2019) and distinguish them from other factors that change 
biodiversity and abundance (e.g., diseases, introductions, extir-
pations, and genetic drift). In the absence of such data, models 
are developed under a baseline scenario where biological data are 
sufficient, and then, this model is used to predict biological con-
ditions under projected future conditions. Doing so we assume 
contemporary relationships will hold in the future; however, we 
acknowledge this may not be the case, particularly when novel 
climate and land-use combinations may exist in the future without 
current correlates.

For our climate change predictions of stream condition, we 
used surrogates for instream biologically relevant measures of 
water temperature and streamflow, which are an oversimplifica-
tion of the ways in which changing climatic conditions will affect 
stream thermal and flow regimes (Knouft & Ficklin, 2017; Morrill, 

Bales, & Conklin, 2005). Using more biologically relevant metrics 
would likely improve model strength and our mechanistic under-
standing of climate effects on stream condition (Kuemmerlen 
et  al., 2015; Merriam, Petty, & Clingerman, 2019; Pyne & Poff, 
2017). Unfortunately, such models for headwaters streams are not 
available for the entire watershed.

4.5 | Management implications

Managers are faced with protecting, conserving, and restoring 
biological populations and associated ecosystems under continu-
ally changing land-use, water demands, and climate conditions. 
Regionally, our results are important considerations in attaining 
and maintaining the 10% stream improvement goal for the wa-
tershed (Chesapeake Bay Program, 2017b). Of the 114,552  km 
of streams in the NHDPlusV2 dataset, using the current three-
category Chessie BIBI ratings, 71,631 km (62.5%) of these streams 
can be improved to a higher condition category. Thus, it would 
take improvement in 7,163 km (4,451 miles) of streams to reach 
the 10% goal. However, our results suggest that without any res-
toration activity, a wide spectrum of future conditions is possible, 
ranging, by 2090, from a watershed-wide degradation in 16.2% of 
stream km (A2 CMIP5 p25) to 1.0% of stream km (B2 Lynch2016 
scenario). Thus, it may take improvement in 11.0% (7,879  km, 
4,896 miles) to 26.2% (18,767 km, 11,661 miles) stream kilometers 
to assuage effects of possible future land-use and climate changes 
and sustain the 10% goal; a range that has dramatically differ-
ent management implications. For example, at a median cost to 
restore a stream kilometer in the Chesapeake Bay watershed of 
$10,500 (Hassett et al., 2005), based on our study, the total cost 
to reach the 10% goal would range between 82.7 and 197.0 mil-
lion US dollars. Where to focus restoration efforts also changes 
among scenarios (Figure 5; Figures S17–S20). Under some sce-
narios (e.g., B2 CMIP5 p50), a more spatially targeted (central 
and southern portion) approach may be fruitful, whereas other 
scenarios (e.g., A2 CMIP5 p50) highlight a watershed-wide need 
for intervention to assure more streams are in improved versus 
degraded conditions.

Globally, our results can be used as an early case study for other 
regions given the expected relatively early projected temperature 
changes and population growth in the watershed. As mentioned 
above, the Chesapeake Bay watershed is in a geographic region 
expected to experience increased temperatures decades before 
global averages and that may experience population increases sim-
ilar to a worst-case global scenario. Furthermore, the Chesapeake 
Bay watershed has a restoration goal set by the Chesapeake Bay 
Program and our results highlight how various possible future sce-
narios may affect not only attaining such restoration goals but also 
sustaining them. Other regions will be faced with similar uncertain-
ties in future land-use and climate scenarios, and therefore should 
acknowledge these uncertainties when attempting to predict fu-
ture conditions.
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