ICPRB WATER MARKETS DISCUSSION SERIES

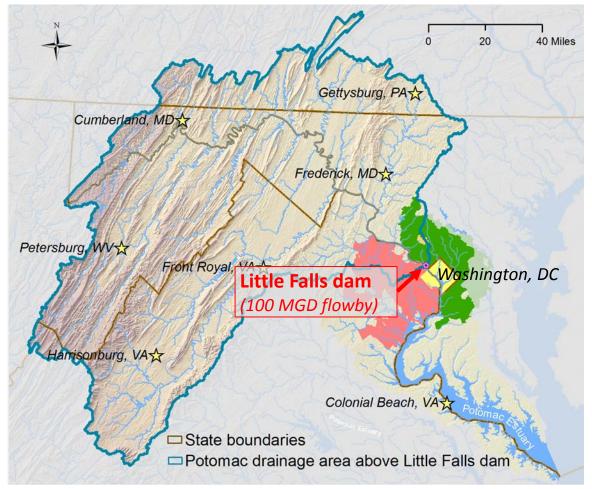
1. Scope & Background

November 4, 2015

Cherie Schultz, PhD

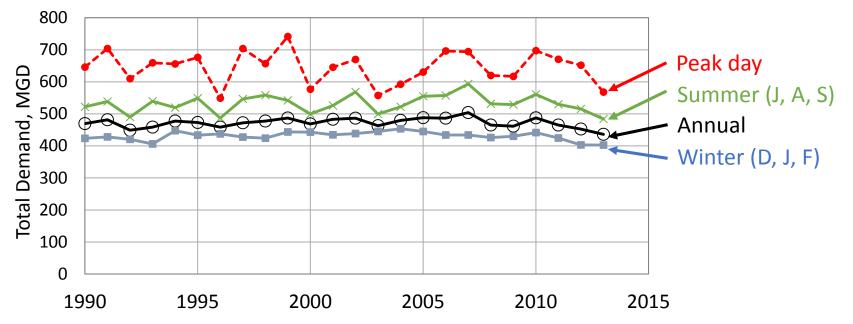
Section for Cooperative Water Supply Operations on the Potomac (CO-OP)

Interstate Commission on the Potomac River Basin (ICPRB)

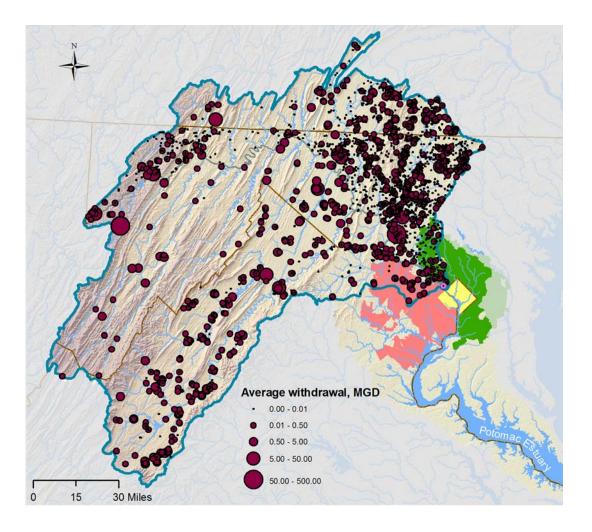

ICPRB Water Markets Discussion Series

<u>Caution</u>: ICPRB staff are not economists, and are not experts in water markets!

- What do we mean by "water markets"?
 - sellers: owners of "excess" water storage
 - buyers:
 - water users in need of additional raw water sources?
 - water users seeking to "mitigate" consumptive use via low flow augmentation?
 - others?
- Focus is on water quantity
 - water supply
 - recreational users
 - ecological systems
 - other?

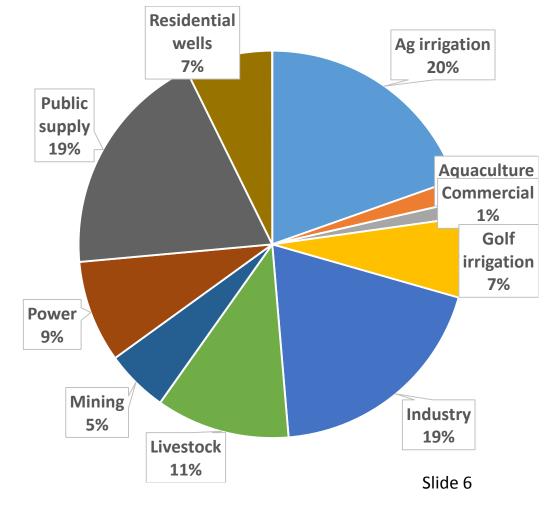

Geographic Scope

- Look at examples from around the world
 - regulatory drivers
 - institutional support
 - technical support
- Apply to "upper" Potomac basin
 - potential benefits
 - potential role of ICPRB, states

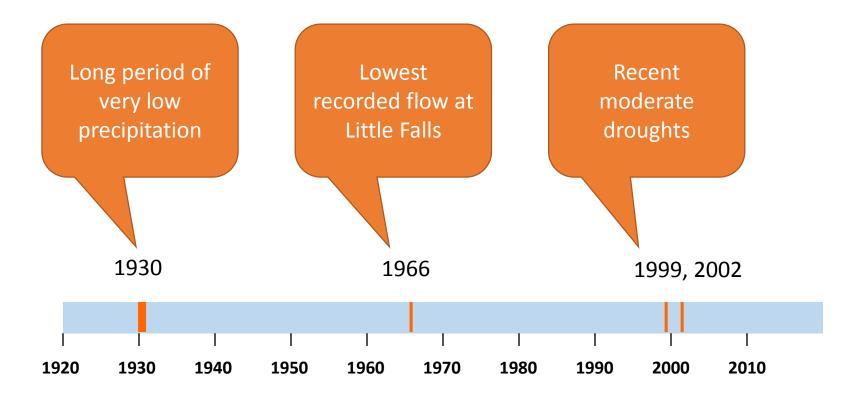

Washington metropolitan area (WMA) water use

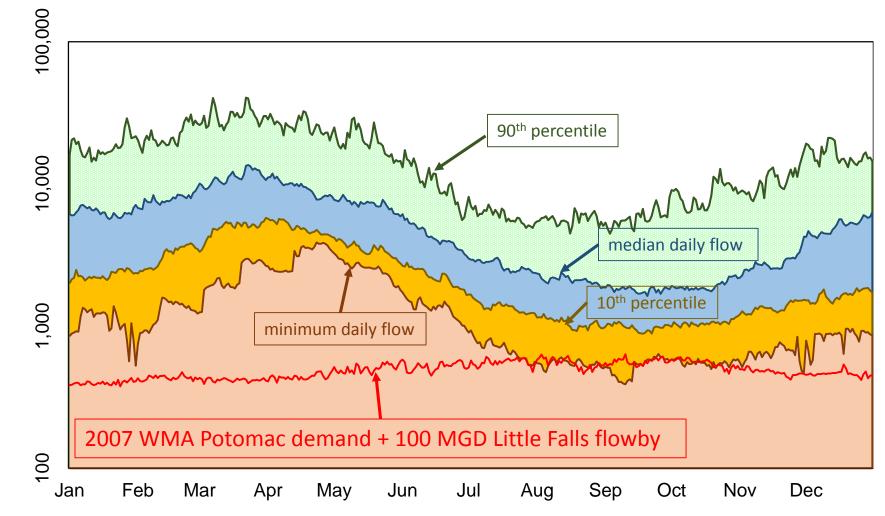
- Current annual demand ~ 475 MGD* steady since 1990
- 2040 annual demand forecast: 545 MGD*
- Water sources: ~ 75% from Potomac River, ~ 25% from off-Potomac reservoirs

Upstream water withdrawals


- ICPRB has developed database of state monthly withdrawals
- Average annual upstream withdrawals totaled 740 MGD in 2010*

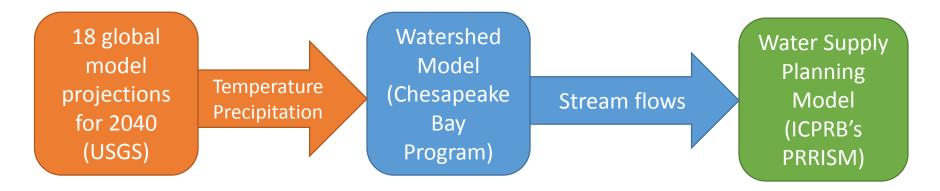
Upstream consumptive use (CU)


- CU is <u>net</u> withdrawal (withdrawal – discharge)
- CU is highest in the summer months (June, July, August)
- Total upstream summertime CU (dry year) is estimated to be
 - 111 MGD in 2010
 - 141 MGD in 2040
- Large forecast uncertainties
 - agricultural use
 - power sector use



Water availability - historical

Water availability – daily Potomac River flow* statistics (from 1930-2013 data)


*"Adjusted" flow at Little Falls – observed flow plus WMA withdrawals

MGD

Water availability – Climate Change (CO-OP 2013 Study)

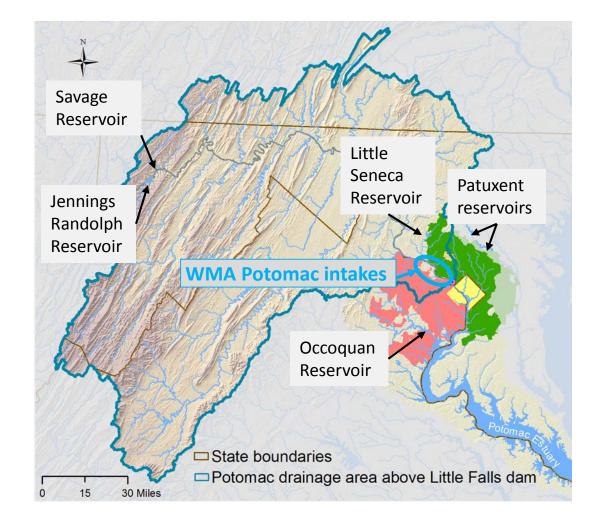
Modeling the potential impact of climate change

- Climate change adds <u>uncertainty</u> to water availability forecasts
- Temperatures are projected to rise
- Precipitation is projected to increase ... or decrease

Water availability – climate response function (CO-OP 2015 study)

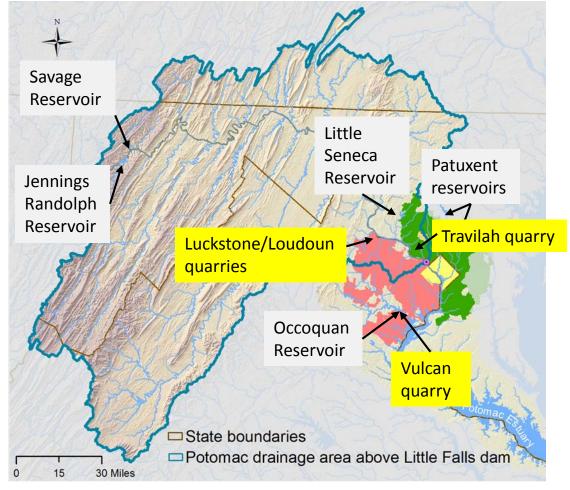
<u>Change in stream flow, ΔQ_{summer} , (%) from 2013 Watershed Model results:</u>

 $\Delta Q_{summer} = 2.254 * \Delta P - 0.038 * \Delta T$


		-10.0%	-7.5%	-5.0%	-2.5%	0.0%	2.5%	5.0%	7.5%	10.0%
	0.0	-23	-17	-11	-6	0	6	11	17	23
ange in average temp, ^c	0.5	-24	-19	-13	-8	-2	4	9	15	21
	1.0	-26	-21	-15	-9	-4	2	7	13	19
	1.5	-28	-23	-17	-11	-6	0	6	11	17
	2.0	-30	-24	-19	-13	-8	-2	4	9	15
	2.5	-32	-26	-21	-15	-9	-4	2	7	13
	3.0	-34	-28	-23	-17	-11	-6	0	6	11
	3.5	-36	-30	-24	-19	-13	-8	-2	4	9
	4.0	-38	-32	-26	-21	-15	-9	-4	2	7

Change in average precipitation (P)

Slide 10


WMA's Cooperative System

- Low Flow Allocation Agreement (1978)
 - DC, MD, VA, US, Fairfax Water, WSSC
 - emergency water allocation formula based on winter use
- Water Supply Coordination Agreement (1982)
 - DC, US, Fairfax Water, WSSC, ICPRB
 - establishment of cooperative system
 - coordination during droughts
 - regular planning studies
 - ICPRB CO-OP as support
 - cost-share formula for <u>future storage</u>
- Storage cost-sharing agreements (1982)

Future reliability of the WMA system

- 2015 water supply study conclusions
 - current system would have difficulty meeting 2040 demands during a severe drought
 - climate change adds considerable uncertainty
- ICPRB's upcoming water supply alternatives study
 - will evaluate ability of new resources and operational changes to meet future challenges

Regulatory drivers in upper Potomac basin

- There are caps on consumptive use in the upper Potomac basin for <u>non-municipal</u> surface water withdrawals
 - Maryland¹: for CU > 1 MGD
 - Virginia²: for CU > 0.5 MGD
- Users whose use exceeds these caps have two choices during low flow periods
 - Secure adequate storage for low flow augmentation to mitigate CU
 - Reduce withdrawals
- Reduction in surface water withdrawals by <u>municipal</u> users required when "Restriction Stage" of the LFAA is declared
 - Maryland¹: requires reductions to wintertime levels (Jan, Feb, Mar)
 - Virginia³: requires reductions in consultation with CO-OP

¹See Code of Maryland Regulations, Title 26 DEPARTMENT OF THE ENVIRONMENT, Subtitle 17 WATER MANAGEMENT, Chapter 07 Consumptive Use of Surface Water in the Potomac River Basin: 26.17.07.01, 26.17.07.02, 26.17.07.03, 26.17.07.04

²See <u>Code of Virginia</u> § <u>62.1-44.15:5.02</u>. Low-flow protections in Potomac River

³See <u>9VAC25-210-110</u>. Establishing applicable standards, limitations or other VWP permit conditions.

Examples of permitting processes involving storage

- Proposed expansion of Mirant Dickerson power facility
 - lead agency: Maryland Public Service Commission (PSC)/envir. review by MD DNR Power Plant Research Program (PPRP)
 - required storage: on-site tanks coupled with reduced production
- Proposed Catoctin Power facility
 - lead agency: Maryland PSC/envir. review by PPRP
 - required storage: WV quarries were candidates
- Proposed modifications of Mirant Dickerson facility for air quality
 - lead agency: Maryland PSC/envir. review by PPRP
 - required storage: 4.5 MG onsite pond & potential reductions in production
- Loudoun Water Potomac River intake
 - lead agency: VA DEQ Water Supply Program
 - required storage: 1.02 BG (onsite retired quarry)
- Town of Leesburg water reuse by Stonewall Generating Station (current)
 - lead agency: VA DEQ Northern Regional Office/envir. review by DEQ Water Supply Program
 - will Stonewall seek mitigating storage to avoid water use reductions required by NPDES permit?

Questions for discussion

- Are there enough drivers currently in place for a water market to develop in the upper Potomac basin?
- Could a water storage market help your organization meet its water management goals?
- Are there potential new storage resources you are aware of that are not mentioned above?
- Other questions for discussion?

ICPRB Water Markets Discussion Series

- Logistics

- Next meetings tentatively scheduled
 - Dec 9, 2015: Overview of water markets in California (Karin Bencala)
 - Jan 7, 2016: Nutrient trading in the Chesapeake Bay watershed (Carlton Haywood)
- Are there specific topics/issues/examples you'd like this discussion series to address?
- Are there people on your staff or in other organizations you'd like to have lead one of these meetings?
- Future directions: end series with a formal workshop?

Email suggestions to Karin Bencala at <u>kbencala@icprb.org</u>