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The object of this paper is to take the mystery out of
the term "Linear Programming" (LP), particularly as applied
to reservoir operations. It is designed for readers
unfamiliar with LP. It should provide the background and
understanding required to participate fully in discussions
of linear programming techniques during the National
Workshop on Reservoir Systems Operations. While it is not a

comprehensive review, a selected bibliography is included.

What is Linear Programming?

Linear Programming is a mathematical technique very
similar to the methods used to solve simultaneous equations.
(Remember two equations in two unknowns or three equations
in three unknowns from algebra?) LP allows its user to
"examine all possible solutions" to a problem, and to find
the solution which "best" fits a particular objective or a
weighted mix of objectives. "Best" is in quotes because the

problem being solved is, in most cases, an approximation of
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the real problem. The resulting solution is not really the
"best," therefore, but rather an approximation of the best

solution to the real problem.

How Do You Use Linear Programming?

In order to use LP, the problem to be "solved" must be
described in a very specific and comprehensive manner. This

is often called the "format" of an LP problem.

The format has two distinct parts, first an "objective
function," and second a set of constraints. Both are linear
combinations of variables, similar to equations. The objec-
tive function is a mathematical description of the good or
service which is to be maximized or the cost or impact to be
minimized. The constraints are mathematical descriptions of
things which must be true if a solution is to be realistic

(feasible).

The concepts in the preceeding paragraph should be much
clearer given an example. Consider the case of maximizing
the release from a reservoir over a historical period 120
months long. If X; is the release from the reservoir in
month i, one objective might be to maximize the sum of the
releases in each month. The corresponding objective would

be written:



Maximize X1 + Xo + ceeeotX779 + X120
or
Maximize  IX;

i=1, 120

In order for any set of releases to be feasible, they
must not exceed the water available to be released in any of
the months. This can be written as a set of equality

constraints; one for each month i,

Xj = Sj=Sj4+1+Rj-Wy

where
Xj = Release in month i (unknown)
Rj = Inflow in month i (known from
historical record)
Sj = Storage at the beginning of
month i (unknown)
Wi = Spill in month i (unknown)

Each of these constraints simply states that the
release in month i must equal the change in storage during
the month, plus the inflow during the month, minus the spill
during the month. These constraints are called the

“continuity equations for the reservoir."



Thus,

Max ZIXj
i=1, 120
subject to
Xj = Sj-Sj4+1+Rj-W; for i=1, 120

Xir Si, Wi ;0

is a linear programming problem, with an objective function

and a set of constraints.

Any linear programming problem can be described in
format very similar to the problem above. The general

format is:

Max C1X3+CoXo+.... «+CnXm
subject to
A11Xy+.e..+Aj1Xj+. .o HA1Xp S By

< :

Xlo.ooXn Z 0

for a problem with m variables and n constraints. In this

format, the C; and Aj4 are known coefficients; the By are
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also known, and the Xj are unknowns called "decision
variables". The reservoir problem above can be put in this

format:

Maximize 1X3+1Xy+...+1X712¢

1X1+0X2+0X3+....-lSl+182+OS3+....+1W1+0W2+...

|
s
—

0X1+. : +1Xi+. .+OSl+. : -lSi+lsi+1+. .+0W1+. W+,

]
s
-

e e 00000 lx120+a TR ._lslzo+lslzl+. e o0 00 -+1W120 = R120

(Note that in the general LP format, there are no
powers, exponentials, or products of decision variables.
All the terms in the format are either constants or the
product of a variable and a constant, hence the name Linear

Programming) .

How are Linear Programs Solved?

The following is intended to give the reader a feel for
what goes on in a computer when an LP is being solved. Once
the problem is organized in an LP format, a canned computer

program is generally used to obtain solutions. These
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programs are often easy to use and well documented. 1In
fact, the most difficult part of using LP is rarely using
the computer to obtain a solution. The process of
understanding a problem and then reducing it to the LP
format without oversimplifying it usually involves far more
time and effort than setting up the program to solve it. 1In
addition, data gathering is often more difficult than

formulation and solution put together.

Nonetheless, it is helpful to have a basic

understanding of how the canned programs work.

For simplicity, assume the problem above only
considered two time periods. The constraints for the two

period problem are:

X1 -S1+59 W1 = R3]

Xo —82+S3 -Wo Rjp

Assuming that S; and S3 (the initial storage and ending
storage) are both fixed, this is a set of two simultaneous
equations in five unknowns, Xj, X3, Sy, W3, Wp. The reader
may remember from algebra that there will be an infinite
number of solutions to such a set of equations. But, if any
three of the variables are set to zero, then there remains a
set of two equations in two unknowns, and these can easily

be solved. Further, the results of that solution can be



plugged into the objective function and an objective value
corresponding to that solution can be obtained. 1In this
five variable, two equation problem there are ten distinct
pairs of variables for which the equations can be solved.
One of the major theorems of LP states that one of these
solutions is optimal, that is, gives a value for the
objective function as high as or higher than any other of

the infinite number of solutions to the equations.

Again, the present problem could be solved for each of
the ten pairs of variables, the objective function values
compared, and the optimum pair selected. This is called
enumeration. For larger problems, this is not so easy. For
example, a problem with 20 unknowns and ten constraints has
over 46,000 unique sets of ten variables. Enumeration, even

for a relatively small problem, can be quite tedious.

LP solution techniques find the optimal combination of
variables without enumerating. 1Instead, the techniques
start with one combination and then examine all combinations
which differ from that combination by only one variable. If
one of the new combinations provides a better value for the
objective function, then it is substituted for the original.
The process is repeated until a combination is found that
has a better value of the objective function than any of the

combinations which differ from it by only one variable. A



second major theorem of LP states that such a combination is

indeed optimal.

That, in a nutshell, is how a computer solves an LP.
The actual programs make use of quite sophisticted matrix

solution techniques, but the end result is the same.

What Makes LP Formulations Realistic?

There is, unfortunately, no easy answer to this
question. About the only way to shed light on this topic is
by illustration. Starting with the two period example
discussed earlier, one possible optimal solution to the
problem as stated has variables S; and X, positive. For

this solution:

S2

S1 + R and

X9 Sl - Ry - S3

(Remember, S, S3, R, and Ry, the Initial Storage, Ending
Storage, and Inflows during months 1 and 2 are all known in
advance). Suppose that the reservoir was full at the
beginning of the first month, that is S; equalled the
capacity of the reservoir. If that is so, than this
solution is unrealistic, for the reservoir can't hold as
much water as would be required at the beginning of month 2,

that is S; (full) plus Ry (the inflow during the month 1).



To eliminate this problem, a constraint on S can be added:
S, X s*

where S* = the capacity of the reservoir. (In the 120 month

*

problem, 119 constraints would be added, Si< S” for i from 2

to 120. Sy is previously known).

Now consider another potential optimal solution to the
two period problem, one with X; and X, positive. 1In this

solution:

X1 Ry + 853 and

X9 Ry = 53

This solution says to empty the reservoir during period 1,
and then release only what is not needed to refill the
reservoir during the second period. (Note the if Ry is less
than S3, this solution is not feasible since X, would be
negative). Such a pattern of release is generally not
desirable, even though it may maximize the total amount of
water released. To correct this, the objective function can
be redefined. Generally, reservoirs are operated to even
out the flow of a stream, and the term "yield" is often
applied to the maximum even release that a reservoir could
provide over a historical record. Define a variable X*

*

(Note: X" = Xj for all i, since releases are even) to be the



even monthly release from the reservoir, and make the new

objective Maximize X*.

Using the new objective (and substituting X* for the X3
in the constraints), and adding the constraints on storage

capacity, gives the following LP for the 120 period problem:

Maximize X*
subject to
X*-Si+5;41+W; = R; (for i=1, 120)

*

s; £ 8* (for i =2, 120)

x*, Sj, Wj all positive.

This formulation is substantially more realistic than
the original, and when it is solved, X* is the oft referred

to theoretical "safe yield" of the reservoir.

In sum, creating realistic LP formulations of problems
is as much an art as it is a science. It requires a
thorough understanding of the problems at hand, and the data
available. A willingness to reexamine the formulation in
light of the kinds of problems which might be encountered

during implementation is also essential.

- 10 -
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Other Examples of LP Objectives and Constraints

It is quite easy to incorporate seasonal or monthly
releases in an LP formulation. An appropriate coefficient

is simply added to the X* in the constraints:
BiX* - Sy + Sj41+1W; = Ry

where A; is the percentage of the average monthly release
(X*) desired in month i. The Aj can be repeated every 12

months, so that A1=A13=A25, and A2=Al4=A26 etc.

Similarly, provision for flood control can be made by

modifying the constraints on maximum storage:
S; s s* - Fj

where Fj is the free storage required for flood control in
month i. F; can be set such that the expected recurrence of
floods larger than a set size is greater than a set number
of years. This determination can be made using standard
hydrologic information before the LP is run. If Fi is set
to maintain such a limited probability of flooding, than
this constraint may be referred to as an "implicit

stochastic" constraint.
Minimum storage for recreation can be required:

S{ 2 Mj

where Mj is the minimum storage required in month i.

- 11 -
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Evaporation can be added to the continuity equations
the LP using a technique called piecewise linearization.
Figure 1 is typical graph of evaporation as a function of

storage in a reservoir.

The curve can be broken up into sections, 1 - 3,
represented by the lines in Figure 1. g; and g3 are the
values of storage at the points where the segments meet.
is the slope of segment j, and Sjj is its length along the
storage axis. ©Now Ej, the evaporation in month i can be

defined:

Ej = G1s5j1+G2532+G38i3
with si12 91

Sj225 92791

sj3< 8%-g2

and S; = sj1+Sji2%Si3

When these constraints are included in the LP information,
the continuity equations can be rewritten to account for

evaporation:
x* -Si+5j4+1+Wi+Ej = Rj

Piecewise linearization is a particularly powerful
tool, since it allows LP's to consider some non-linear
relationships. It can be used with functional

transformations. Hydropower production from a single

- 12 -
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Piecewise Linearization of Evaporation Function
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reservoir can be required to be above a certain level using
this combination of techniques. Power produced in month i
is proportional to the product of head, Hj and release Xi.
Using a proportionality constant p and defining P; as the
minimum power required in month i, the power constraints can

be written:

PH{X; 2 Pj

Since this contains the product of two decision variables,
head (a function of storage), and release, it cannot be used
directly in an LP. However, logarithms can be taken (a

functional transform) to obtain an equivalent condition:
In(p)+1ln(Hj)+1ln(Xj) 2 1n(P;)

In(Hj) can be piecewise linearized as a function of storage
Sj (Jjust as with evaporation E; above), 1n(Xj) can be
piecewise linearized as a function of release Xj, and the
condition can then be included in an LP. (p and P; are
constants known in advance, and so their logs are also

constants.)

One common "flaw" in all the formulations so far
discussed is that they assume perfect foreknowledge of
inflows to the reservoir, and then determine the optimal
operating scheme. To avoid this, releases may specified to

be according to a rule based on reservoir storage and

- 14 -



previous inflows. The LP may then be used to determine the
optimal parameters for these rules. (The formulations below
are based on work by ReVelle and coworkers. See
references.) Defining Z; as a factor applied to the
previous months inflow to determine releases, and Bj as a
variable to be set in the LP, a linear decision rule for

releases can be written:
Xi=S; - Bj +ZjRj-1

When this constraint is included in a formulation, the LP
will solve for the %Z; and Bj which, when used in the above
release rule, would have maximized the objective over the
historical record. The rule could then be followed as a

guide in the future.

The constraints developed above can be used in

* could be taken as

conjunction with many objectives. X
known, S* left as a variable and the objective set as
Minimize S*. If both X* and S* are set, power production
could be maximized from a single reservoir. Weighted sums
of the objectives can be maximized to determine the
tradeoffs between objectives. (This is called linear
multi-objective programming). Other possible objectives
include minimizing deviation from monthly target releases

and maximizing economic benefits as a function of monthly

releases.

...15_



What are the major limitations on the use of LP?

The two major limitations on the use of LP are 1) the
fact that not all problems can be fitted to an LP format,
and 2) a limit on the size of the problem which can be
solved in a modern computer. The difficulty in solving
problems on computers is most directly related to the number
of constraints in the problem. Problems as large as several
thousand constraints can currently be solved, but solutions
may be expensive. This restricts the use of LP generally to
investigations of monthly operations over larger periods, or
to weekly, daily or hourly operations over much shorter

periods.

Fitting problems to an LP format, however, is an art as
much as it is a science. Some things, like a hydropower
constraint for multiple reservoirs (analogous to the

previous hydropower constraint):
P1H{1X31 t+ P2Hji2¥Xji2 S Pi

where the numerical subscript refers to the different
reservoirs, simply cannot as yet be formulated in an LP.
Other major problems occur when variables must be discrete,
i.e., a release has no value unless it fully satisfies a
particular demand, or a decision must be made to either not

build a facility or to build it at a minimum size. These
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problems can be overcome by using a technique called mixed
integer programming which requires a format essentially the
same as that for LP with the exception that discrete
variables are allowed. The problem then is the large

reduction in the size of the problems which can be solved.

Summary and Conclusions

So far, LP format, and the basic method of solution of
LP problems have been described, and various simple
applications of LP to reservoir operation problems have been
developed. Some of these used tricks of the LP trade,
piecewise linearization and functional transforms. There
has been a brief discussion of linear operating rules and
also of some of the limitations of LP. 1In concluding, some
further discussion of the basic nature of linear

optimization is in order.

Natural processes are rarely truly linear. Therefore,
any attempt to describe them in the linear fashion required
by LP forces an approximation. The optimal solutions to LP
problems are, therefore, only approximations of optimal
solutions to real problems. Further, in developing LP
formulations, important constraints can be overlooked or
very poorly approximated. This can lead to nonsense

solutions. The best measure of the appropriateness of an LP

- 17 -
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formulation is the utility of the solutions it provides in

guiding real operations. Every LP solution must be

evaluated in this light.

On the other hand, LP can be and has been a valuable
tool in improving reservoir operations, as case studies at
the National Workshop on Reservoir Systems Operations will
show. The very act of formulating an LP problem forces an
assessment of objectives, of the relationship between
operations and these objectives, and of the data needed to
address the problem. Solutions to LP problems can provide

added insight and new and better operating policies.

- 18 -
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