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Abstract

The Occoquan Reservoir is a water supply reservoir located on the Occoquan River in
Fairfax and Prince William counties, Virginia. The reservoir is owned and managed by
Fairfax County Water Authority. The Co-op Section of the Interstate Commission on the
Potomac River Basin (ICPRB) maintains inflow records for the reservoir as part of its
mission for efficient utilization of all available water supply facilities for the Washington
Metropolitan Area, particularly during drought periods. The prior ICPRB set of daily inflows
to Occoquan Reservoir was examined and revised in three important ways.

1. Animproved model was used to create a synthetic inflow during the most severe drought
of record for the region (in the early 1930°s). A series of seasonal regressions more
closely predicted gaged flow on the Occoquan River at Occoquan, reducing the average
inflow rate by 9.0 percent as compared to prior inflow records.

2 Prior data sets did not include inflow records to the Occoquan reservoir after December
31, 1986. This work updates the Occoquan inflows to September 30, 1996.

3. The inflow record developed in this analysis represent the natural reservoir inflows that
would have occurred in the Occoquan without human influences such as upstream
diversions or wastewater discharges. Diversions of water and wastewater discharges to
the reservoir watershed were tracked separately.

When possible, the methods used in creating each segment of the dataset were examined
quantitatively to compare how well each method compared to the best available estimate of
inflow volume. The Occoquan River at Occoquan gage site was the best available estimate
of inflow to the Occoquan reservoir since it was located near the site of the current dam. Six
regression models were developed corresponding to low-, medium-, and high-flow intervals
in the periods October through April and May through September. The October through
April low-, medium- and high-flow regression models predicted inflow volume within -1.3 to
+0.6 percent of that predicted by the Occoquan gage, and the May through September
models’ results were between -9.2 to +0.8 percent of the Occoquan gage. During the periods
when there were active gages in the Occoquan Reservoir watershed and the area-adjustment
models could be used, those models predicted inflow volume within -0.5 to +2.6 percent of
that predicted by the Occoquan River at Occoquan gage.



1. Introduction

The Occoquan Reservorr is located on the Occoquan River in Fairfax and Prince William
counties, Virginia (Figure 1). The reservoir, owned and managed by Fairfax County Water
Authority (FCW A) has a usable storage-capacity of approximately 8.19 billion gallons (BG).
Throughout the stream gage record, there were no gages directly measuring the inflow to the
Occoquan reservoir, However, a record of "natural” inflows was developed for the water years
1927 t0 1996. The development of the inflow record required using a combination of drainage
area-adjustment factors and flow records from outside of the reservoir watershed.

The inflow record is called "natural” because it represents those inflows to the reservoir that
would have occurred without upstream withdrawals, return flows, or reservoir regulation.
Prior analyses (Hirsch, 1978; Black and Veatch, 1996; Schwartz, 1996) incorporated
withdrawals and return flows into a single flow record in order to create inflows representative
of the current conditions at the time of the analysis (i.e, design-simulation conditions). The
drawback to this type of data set is that as conditions change in the basin, the data set is
rendered obsolete. A separate accounting of natural flows and human influences facilitates
future updates of design-simulation conditions, since it allows the user to modify only those
files accounting for upstream diversions or return flows without having to recreate the entire
flow record. Upstream withdrawals and wastewater return flows to the reservoir watershed are
described in later sections of this report.

For those periods when gages were located in the reservoir watershed, area-adjustment factors
were used to create inflows. Area-adjustment factors were applied when a gage located within
the reservoir watershed measured flow from a smaller drainage area than that of the reservoir
watershed. Measured flow from the gaged drainage area was increased by an amount equal to
the area of the larger reservoir watershed divided by the area of the gage station watershed;

(Gaged flow) = (Area of reservoir watershed )

(Area of gage station watershed )

The area-adjustment method tends to over-predict peak flows and under-predict recession
flows because of differences in the time-of-concentration between the smaller gaged watershed
and the reservoir watershed. Over a longer interval, differences cancel when the runoff
produced per unit area is equivalent. Thus, an underlying assumption implicit to the area-
adjustment procedure is that each part of the reservoir watershed is equally productive with
regard to runoff per unit area.

A caveat: the area-adjustment method was selected for its ability to predict the volume of
inflow to the reservoir. This technique is not appropriate for estimating the timing and
magnitude of peak flows into the reservoir. Therefore, the inflow record created using this
method should not be used to analyze the magnitude or frequency of peak daily flow events
(e.g., as for flood risk analysis). This inflow record was instead developed and validated for
use in simulation models that perform volumetric accounting of reservoir contents, for water

supply planning purposes.
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During the periods 1927-1937 there were no gages in the Occoquan reservoir watershed,
and one must fook to neighboring watersheds for sources of flow information. The
Rappahannock watershed borders the Occoquan watershed and both watersheds are
located in similar geologic areas, the Coastal Plain region southeast of the Blue Ridge
Mountains. Regression relationships were developed that correlate flow between the
gaged portions of the Occoquan and the Rappahannock watersheds during times when
flow was measured in both watersheds. The regression equations were then applied to
measured flows on the Rappahannock during the years that no gages were located in the
Occoquan Reservoir watershed in order to create a set of synthetic Occoquan reservoir
inflows. The regression-analysis method does not accurately recreate the statistical
variability of the flow events but does provide the best least squares estimate of the
volume of inflow over the period of record.

2. Daily inflow development

Table 1 summarizes the stream gages and time periods used in the development of each
segment of the Occoquan Reservoir inflow record. The development of each component
of the inflow record, throughout the simulation period, 1s described below.

Table 1: Stream gages used to develop the Occoquan Reservoir inflow record

Synthetic inflow U.S.G.S. stream gages used | Gage number | Drainage
period of record for record generation Area (Sq.
miles)
10/1/1927 - 9/30/1937 | e Rappahannock River at * 01664500 e N/A
Kelly’s Ford
¢ Rappahannock River at ¢ 01664000
Remington
10/1/1937 - 3/31/1956 |  Occoquan River near e 01657500 » 570.0
Occoquan
4/1/1956 - 4/24/1963 e Broad Run at Buckland e 01656500 * 505
¢ Bull Run near Manassas ¢ 01657000 ¢ 148.0
o Cedar Run near Catlett ® 01656000 * 93 4
4/25/1963 - 4/30/1969 | e Broad Run at Buckland ¢ 01656500 * 505
e Cedar Run near Catlett e 01656000 ¢ 93 4
5/1/1969 - 9/30/1972 ¢ Broad Run at Buckland * 01656500 * 50.5
¢ Bull Run near Catharpin ¢ 01656725 0258
e Cedar Run near Catlett * 01656000 934




Synthetic inflow U.S.G.S. stream gages used | Gage number | Drainage
period of record for record generation Area (Sq.
miles)
10/1/1972 - 9/30/1979 | e Broad Run at Buckland e 01656500 ® 505
» Bull Run near Catharpin e 01656725 * 258
¢ Cedar Run near Aden » 31656100 e 1550
10/1/1979 - 9/30/1980 | e Bull Run near Catharpin * 01656725 ® 258
e Cedar Run near Aden ¢ 01656100 ® 155.0
10/1/1980 — e Broad Run at Buckland e Occoquan ® 50.5
12/31/1995 e Bull Run near Catharpin Watershed ®258
e Cedar Run near Aden Monitoring e 1550
¢ Rappahannock River at Laboratory/ * NA
Remington USGS
1/1/1995- 9/30/1996 e Cedar Run near Catlett ¢ 01656000 934
1927-1937

The longest and most severe drought of record in the region occurred from June of 1930
to January of 1932, based on an examination of stream gages in the Patuxent basin.
Although no gage information exists on the Occoquan during the time period between
1927-1937, flow records exist on the Rappahannock. Additionally, gage records are
available for both the Occoquan (Occoquan River near Occoquan) and Rappahannock
(Rappahannock River at Kelly’s Ford and Rappahannock River at Remington) for
comparison during the period from October 1, 1937 to December 31, 1955.

A series of non-linear regressions was developed for low-, medium-, and high-flow
periods for the periods May through September and for October through April between
the flow on the Rappahannock River and the flow on the Occoquan River during the
overlapping gage record. These regression relationships were applied to the flow on the
Rappahannock to create a synthetic inflow record for the Occoquan for the period
October 1, 1927 through September 30, 1937. Appendix A provides a discussion of the
non-linear regression model development and graphs of each model calibration curve.
Non-linear regression techniques were used to avoid bias introduced by using linear
regressions on logarithmically transformed data (Ferguson, 1986). The seasonal
regression approach was partially based on prior work conducted by Robert Hirsch of the

USGS (1978).

The general procedure followed was to randomly divide the 1937-1955 data into two
halves, a model calibration and a model validation set. Testing each regression
relationship on the validation data set allowed for a means of quantitatively comparing
each model. (Validation data is that data not used for the model calibration, which allows
for an unbiased test of the relationship predicted by the calibration data.)



Table 2 shows the results for each model. Validation results were expressed in terms of
how well each model predicted the reservoir inflow based on gaged flow at the Occoquan
River at Occoquan. Table 2 also shows the number of data points used for calibrating

each model.

Table 2: Comparison of regression models used for 1927-1937 period

Regression-model * Number of Difference between modeled
data points and actual Occoquan R. at
used in model Occoquan flow for model
calibration validation data-set (%) ™°
Oct. through April: low-flow 356 0.6
Oct. through April: med.-flow 811 -0.6
Oct. through April: high-flow 891 -13
May through Sept.: low-flow 441 -03
May through Sept.; med.-flow 615 0.8
May through Sept.: high-flow 348 -92
Overall results NA -12

Notes: * Low-flows defined as flow on the Rappahannock < 200 cfs,
Med-flows defined as flow on the Rappahannock between 200 and 600 cfs.
High-flows defined as flow on the Rappahannock > 600 cfs.
b Positive difference corresponds to a model over-prediction of Occoquan R. at Occoquan flow.
° Percent difference is calculated as: [(modeled flow volume — Occoquan R. at Occoquan flow

volume) / Occoquan R, at Occoquan flow volume]*100.

The low-flow models were most important for determining inflow during the critical
drought of record. Fortunately, the model validation differences were small, within

-0.3 and +0.6 percent for low-flow ranges. Medium-flow validation differences were
also small, within -0.6 and +0.8 percent. The October through April high-flow model
validation difference was -1.3 percent, but the May through September high-flow
difference was -9.2 percent. The overall result shows that the model is slightly
conservative, under-predicting Occoquan River at Occoquan gaged flow by -1.2 percent
when total inflow was compared over the 1937 through 1955 data set.

Figure 2 compares flow volumes as calculated from the regression models with actual
gaged flows during the period from October 1937 through September of 1952. The
figure qualitatively shows that the models predicted flow volume well, especially at low

flows.
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1937-1956

The Occoquan River near Occoquan gage became operational on October 1, 1937, The
Occoquan River at Occoquan gage provided the best available estimate of inflow to the
Occoquan reservoir since it was located near the site of the current dam. The daily gaged
stream-flows from the Occoquan River near Occoquan gage were multiplied by an area
adjustment factor of 1.038 (equals 591.9 + 570.0) to convert Occoquan gage flows to
Occoquan reservoir watershed inflows for the period October 1, 1937 to March 31, 1956.

The drainage area to the reservoir of 591.9 square miles was estimated using a planimeter
and USGS topographic maps as discussed in ICPRB report no. 98-1.

1956-1963

The stream gage on the Occoquan River near Occoquan was discontinued on March 31,
1956 due to construction of the Occoquan upper dam: the gage site was submerged after
construction of the reservoir. Therefore, inflows to the reservoir were based on gaged
flow to the reservoir’s three main tributaries: Bull Run, Broad Run, and Cedar Run. The
three gages used were Bull Run near Manassas, Broad Run at Buckland, and Cedar Run
near Catlett. These gages have watershed areas of 148.0, 50.5, and 93 4 square miles
respectively. Flows from the three gages were combined and multiplied by an area
adjustment factor of 2.028 = (591.9 + [148.0 + 50.5 + 93.4]) to create an Occoquan
Reservoir inflow record for April 1, 1956 to April 24, 1963,

A comparison was made between the reservoir inflow calculated using the three gages
with the reservoir inflow volume calculated using the Occoquan River near Occogquan
gage (the best available estimate of inflow to the reservoir between September 1, 1950
and March 31, 1956, The area-adjustment method applied to the three gages under-
predicted the total reservoir inflow calculated using the Occoquan River near Occoquan
gage by 2.6 percent. Figure 3 shows a sample hydrograph of the reservoir inflows using
the two methods.

1963-1969

Starting in 1963, treated wastewater was released above the Bull Run near Manassas
gage, altering natural flow levels (Hirsch, 1978). Use of this gage was therefore avoided
in developing natural inflows. The feasibility of using the remaining gages on Cedar Run
at Catlett and Broad Run at Buckland was examined to see if these gages were adequate
for estimating inflow to the Occoquan reservoir. These gages were determined to closely
predict that inflow based on the Occoquan River near Occoquan gage (-0.5 percent),
therefore they were selected for use during the period April 25, 1963 to April 30, 1969.
These gages have watershed areas of 93.4 and 50.5 square miles, respectively. Flows
from the two gages were combined and multiplied by an area adjustment factor of 4.113=
(591.9 + [93.4 + 50.5]) to create an Occoquan Reservoir inflow record. Figure 4 shows
a sample hydrograph of the reservoir inflows calculated using area-adjustment as
compared to the inflow predicted by the Occoquan at Occoquan gage.
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Figure 3: Example inflow based on gages on the Cedar, Broad, and Bull Runs compared to the
best available estimate of inflow (the Occoguan River near Occoquan gage)

Figure 4 illustrates how the magnitude of peak flows was over-predicted by the two gages
and the magnitude of recession flow (i.e., that flow occurring immediately after peak
flow) was under-predicted. The difference is due to differences in time of concentration
between smaller and larger watersheds. The time of concentration is the time it takes a
drop of water falling in the farthest corner of the watershed to reach the lowest part of the
watershed. Rain falling in a smaller watershed takes less time to concentrate at a gage
site. Over a longer period, differences cancel out for the area-adjustment method if the
volume of water produced in the smaller watershed per unit area is equivalent to the
volume of water per unit area produced in the larger watershed.

1969-1972

The Bull Run near Catharpin gage became operational May 1, 1969. This gage was
located upstream of any wastewater treatment plant discharge, so it provided useful
information in developing a set of natural inflows. The three gages used were Bull Run
near Catharpin, Broad Run at Buckland, and Cedar Run near Catlett. These gages have
watershed areas of 25.8, 50.5, and 93.4 square miles respectively. Flows from the three
gages were combined and multiplied by an area adjustment factor of 3.488 (equals 591.9
- [25.8 + 50.5 ++ 93 .4]) to create an Occoquan Reservoir inflow record for May 1, 1969 to

September 30, 1972.
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Figure 4: Example inflow based on gages on the Cedar Run and Broad Runs, compared fo the
best available estimate of inflow (the Occoquan River near Occoquan gage)

No direct comparison of these three gages was made since the operation of the Bull Run
near Catharpin gage did not overlap with the Occoquan River near Occoquan gage. The
comparison of the area adjustment method for Broad Run at Buckland and Cedar Run
near Catlett gage information was -0.5 percent.

Note that prior ICPRB inflow records for this period were based in part on the Occoquan
River near Manassas gage located below the confluence of Cedar and Broad Runs. The
Occoquan River near Manassas gage is located downstream of Lake Manassas, an
impoundment constructed on Broad Run in the late sixties. Lake Manassas began filling
in 1968 (Hirsch, 1978), so flows at the Occoquan River near Manassas gage were
influenced by diversions to Lake Manassas as well as by municipal withdrawals from
Lake Manassas in subsequent years. Use of this gage was therefore avoided in
developing natural inflows.

1972-1979

The Cedar Run near Aden gage became operational October 1, 1972. The Cedar Run
near Aden gage is preferable to the Catlett gage, because the Aden gage measures runoff
from a larger sub-watershed area than the Catlett gage and is thus likely to better
represent flow in the Occoquan reservoir watershed. Inflow was created using the area-
adjustment method applied to flows measured at the Cedar Run near Aden, the Bull Run
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near Catharpin, and the Broad Run at Buckland gages. Flows from the three gages were
combined and multiplied by an area adjustment factor of 2.559 (equals 591.9 = [155.0 +
25.8 + 50.5]) to create an Occoquan Reservoir inflow record between October 1, 1972

and September 30, 1979.

The comparison using these three sites was not directly computed because there was no
period when these gages operated concurrently with the Occoquan River near Occoquan
gage. However, the difference is likely to be less than that calculated for the Broad Run
at Buckland and Cedar Run at Catlett gages, because the Aden gage measures flow from
a larger sub-watershed area than Catlett, and the Bull Run near Catharpin gage represents
additional flow information. The Broad Run at Buckland and Cedar Run at Catlett gages
under-predicted the total volume of inflow based on the Occoquan River at Occoquan

gage by -0.5 percent.

1879-1980

The Broad Run at Buckland gage did not operate during the period October 1, 1979 to
September 30, 1980. Inflow was calculated using the area-adjustment method applied to
flows measured at the Cedar Run near Aden and the Bull Run near Catharpin gages.
Flows from the two gages were combined and multiplied by an area adjustment factor of
3.274 (equals 591.9 = [155.0 + 25.8]) to create an Occoquan Reservoir inflow record for

QOctober 1, 1979 to September 30, 1980.

No direct comparison of these two gages was made since the Bull Run near Catharpin
gage did not overlap with the Occoquan River near Occoquan gage. The comparison of
the area adjustment method for Broad Run at Buckland and Cedar Run near Catlett gage

was -0.5 percent.

1980-1987

The Broad Run at Buckland gage was re-activated on October 1, 1980. Inflow was
calculated as for during the period 1972 to 1979, i.e., inflow was created using the area-
adjustment method applied to flows measured at the Cedar Run near Aden, the Bull Run
near Catharpin, and the Broad Run at Buckland gages. Flows from the three gages were
combined and multiplied by an area adjustment factor of 2.559 (equals 591.9 + [155.0 +
25.8 + 50.5]) to create an Occoquan Reservoir inflow record between October 1, 1980

and January 6, 1987.

1987-1995

The Bull Run near Catharpin and Broad Run at Buckland gages ceased being maintained
by the USGS in January of 1987. However, the Occoquan Watershed Monitoring
Laboratory (OWML) at Virginia Polytechnic Institute began monitoring the Cedar Run
near Aden gage in January of 1987, and the Bull Run near Catharpin and Broad Run at
Buckland gages in January of 1988. In addition to the OWML flow data, the USGS
began monitoring the Cedar Run near Catlett gage on September 20, 1989

1"



Inflow was calculated as for during the period 1980-1987 i.e., inflow was created using
the area-adjustment method applied to flows measured at the Cedar Run near Aden, the
Bull Run near Catharpin, and the Broad Run at Buckland gages (area-adjustment ratio =
2.559). For the period when gage information was available from only the Cedar Run
near Aden station, the appropriate area-adjustment ratio of 3.819 (equals 591.9 +~ 155.0)
was used to create reservoir inflow.

The OWML gage records have missing records for one or more of the stations on several
dates. In these cases, the appropriate area-adjustment value was used. For example, if
gage information was available from only the Cedar Run near Aden and the Bull Run
near Catharpin gages, then inflow was calculated using the area-adjustment method
applied to flows measured at the Cedar Run near Aden and the Bull Run near Catharpin
gages. If flow records were missing from the Cedar Run near Aden gage, then USGS
records for the Cedar Run near Catlett were substituted and the area-adjustment factor
changed accordingly. (Comparison of the inflow using just the Cedar Run near Catlett
gage is given in the section below which discusses the period 1995-1996.)

If flow records were missing from the Cedar Run near Aden gage in the period before the
USGS Cedar Run near Catlett gage became active, then the regression model developed
for the period 1927-1937 was applied to USGS gage flows for the Rappahannock River.
(The regression model is discussed in detail in Appendix A.)

19951996 Sec Gy rop

The inflow record to Qccoquan reservoir from January 1, 1995 to September 30, 1996
was based on USGS records maintained for the Cedar Run near Catlett gage. This gage
has a drainage area of 93.4 square miles. The record of estimated inflow to the
Occoquan reservoir was obtained by multiplying the gage flows by an area-adjustment
factor of 6.337 (equivalent to 591.9 divided by 93.4). Note that because this gage
continues to operate as of April 1998, inflow to the Occoquan reservoir can be easily
updated beyond September 30, 1996 as records are posted by the USGS.

The Cedar Run near Catlett gage was operational between September 30, 1950 and
March 31, 1956 as was the gage at Occoquan River at Occoquan. The prediction of
inflow volume based on the area-adjustment method applied to the Cedar Run near
Catlett gage site Was +0.8 percent highénthan the inflow based on the Occoquan River

near Occoquan (the best available estimafe of inflow). :
S D e @,)vxy‘ WS “‘""trl_, L~ (3} e w2 e L\(;ta

Note that ongoing updates of natural flows could also be conducted following the area-
adjustment method outlined in the 1987-1995 section, using the Broad Run at Buckland,
the Cedar Run near Aden, and the Bull Run near Catharpin records that are available
from the Occoquan Watershed Monitoring Laboratory.

3. Current and projected diversions from Lake Manassas

Lake Manassas is an impoundment constructed on the Broad Run portion of the
Occoquan watershed. The lake began filling in 1968 and has a watershed of
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approximately 60 square miles. The City of Manassas withdraws water from Lake
Manassas and supplies finished water to Prince William County Service Authority in
western Prince William County. Withdrawals from L.ake Manassas reduce the natural
flows that would have occurred in Broad Run.

The City of Manassas was contacted to determine current and projected withdrawals.
The 1995 withdrawals averaged 5.8 mgd and 1996 withdrawals averaged 6.3 mgd. The
withdrawals followed a seasonal pattern, peaking in the summertime months. The mean
monthly variation in demand is shown in Table 3 for the years 1995 through 1996. Mean
monthly production factors are used to disaggregate future annual average daily demands
to monthly average daily demands.

Withdrawals from Lake Manassas are projected to increase to 8 mgd in 2020, and reach
12 mgd in year 2050 (Dee Wright, City of Manassas Sewer and Water Department,
personal communication, April, 1998). Note that the effect of evaporation from Lake
Manassas on natural flows to the Occoquan reservoir was not considered in this analysis.

Table 3: Demand and mean monthly production factors for the City of Manassas, based on 1995
through 1996 data

Month 1995 Demands 1996 Demands Mean Monthly
(MG) MG) Production Factor
January 165,888 164,012 7.4%
February 151,583 166,242 7.2%
March 163,237 172,712 7.6%
April 168,890 172,372 7.7%
May 176,317 193,938 8.3%
June 172,149 219,382 8.8%
July 195,911 226,336 9.5%
August 238,340 226,105 10.5%
September 195,483 209,844 9.1%
October 175,881 194,450 8.3%
November 158,526 179,943 7.6%
December 163,458 187,979 7.9%
Totals 2,125,663 2,313,315 100.0%
Average MGD 5.8 6.3 NA

4. Current and projected UOSA wastewater return flows

Inflow to the Occoquan reservoir is significantly increased above naturally occurring
flow levels by wastewater releases from the Upper Occoquan Sewage Authority’s
(UOSA) wastewater treatment plant near Manassas. The UOSA plant serves four
jurisdictions: Fairfax County, Prince William County, Manassas, and Manassas Park.
Black and Veatch (1996) contacted each of the four jurisdictions in 1995 to establish their
wastewater flow projections through year 2050. The combined UOSA flow into the

13



reservoir from all jurisdictions is projected to increase from 20.3 mgd in year 1995 to
66.9mgd in year 2050.

Table 4 shows the projected wastewater return flows for the four jurisdictions as given in
the Black and Veatch report. Manassas, Manassas Park, and Prince William County
reported projections on an annual basis through the year 2005, and estimated year 2050
return flows. Between year 2005 and 2050, annual return flows were estimated by linear
interpolation for these jurisdictions. Fairfax County reported projections on an annual
basis through the year 2020 and provided an estimate of year 2050 flows. Between year
2020 and 2050, annual return flows were estimated by linear interpolation for Fairfax

County.

Table 4: Projected UOSA wastewater return flows

Fiscal Year City of City of Fairfax Prince Total Flow
Manassas | Manassas Park [County Flow| William (mgd)
Flow Flow (mgd) County Flow
(mgd) (mgd) (mgd)
1995 4,184 1.150 9.48 5.5 20.314
1996 4,200 1.240 9.92 5.4 20.760
1997 4.323 1.310 10.37 5.78 21.783
1998 4.432 1.350 10.84 6.18 22.802
1699 4.570 1.390 11.32 6.63 23.910
2000 4710 1.430 11.81 7.11 25.060
2005 4,780 1.630 14.1 9.52 30.030
2010 5.286 2.123 15.43 11.115 33.954
2020 6.000 2.870 18.06 14.936 41.865
2030 6.000 3.616 22.264 18.757 50.638
2040 6.000 4.363 25.819 22.579 58.760
2050 6.000 5.110 29.373 26.400 66.883

5. Storage loss due to sedimentation

The current storage volume of the reservoir was estimated from a bathymetric survey of
the Occoquan reservoir, conducted by the Occoquan Watershed Monitoring Laboratory
in April of 1995. The volume of the Occoquan reservoir at the normal pool elevation of
122 feet is 8.52 billion gallons. The volume of water in dead storage is 0.328 billion
gallons (dead storage is that water volume stored below the lowest water intake structure
below elevation 80 feet). The difference in these two volumes is the water available for

water supply, 8.19 billion gallons.

The volume of storage in the Occoquan reservoir is expected to decrease over time due to
the effects of sedimentation. The original estimate of Occoquan reservoir volume was 11
billion gallons, and was developed prior to 1955. No record exists of how this
calculation was made. The large difference in the estimates of original and current
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Occoquan volume may be due to inaccuracies in the original estimate of reservoir volume
as well as from sediment deposition in the reservoir. Black and Veatch found likely
inaccuracies in the 1948 USGS quad-maps that might have been used to originally
determine reservoir volume (Black and Veatch, 1996). A good assessment of the
sedimentation rate is not currently possible because the original estimate of reservoir
volume is uncertain and only one bathymetric survey has since been conducted (in 1995).

However, a storage loss rate of 69 million gallons a year assumes that the original 11
billion gallon estimate of volume is accurate, and that the sediment accumulation is
distributed evenly throughout the years. Using this storage loss rate, the total storage in
2020 would be 6.8 billion gallons, and in 2050 the storage would be 4.7 billion gallons.
Alternatively, the Black and Veatch study (1996) suggests that a mid-range estimate of
sedimentation-rate would result in an estimated storage volume of 6.5 billion gallons in

2050.
6. Evaporation and precipitation

Evaporation can be a significant factor in the reservoir water balance equation, especially
during summertime periods of drought. The National Climatic Data Center (NCDC)
maintains pan evaporation data for the Piedmont Research Station located in Orange
County, Virginia near the town of Culpeper and approximately 50 miles from the
reservoir. Average and maximum monthly pan evaporation for the Piedmont Research
Station is given in Table S for the years 1972 through 1996.

Average monthly precipitation for the Occoquan Reservoir is given in Table 5 for the
years 1931-1985. Precipitation data was compiled from the NCDC for weather stations
located in Manassas, Virginia. Manassas is located within the reservoir watershed.

Table 5: Average evaporation and precipitation values for Occoquan Reservoir

Month Average Pan Maximum Pan Average Precipitation,

Evaporation, 1972- | Evaporation, 1972~ 1931-1985

1996 (inches) 1996 (inches) (inches)
January 1.3* - 2.7
February 1.1° - 2.3
March 1.5° - 3.1
April 54 6.5 3.0
May 6.1 7.4 3.9
June 7.0 8.5 34
July 7.2 9.0 3.9
August 5.9 6.9 4.1
September 4.7 5.5 3.4
October 3.6 4.4 3.1
November 2.7° -- 2.8
December 1.8° -- 2.9

Note: “ Evaporation at the Piedmont Research station was not measured during the months of November
through March. Evaporation rates for these months from Hirsch (1978).
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Actual evaporation from the reservoirs is likely to be less than the pan evaporation rates
given in Table 5. A coefficient of 0.7 can be used to adjust pan evaporation o
approximate reservoir evaporation rates (Linsley, 1949, 1982). Using the adjusted pan
evaporation rate, evaporation could account for up to 1.4 billion gallons of water loss
from the Occoquan reservoir during the months of April through October. (This
calculation assumes no rainfall inputs, the reservoir surface area corresponding to the
full-pool reservoir elevation, the maximum pan evaporation rates given in Table 5, and 2

pan adjustment coefficient of 0.7.)

7. Summary

When possible, the methods used in creating each segment of the dataset were examined
quantitatively to compare how well each method compared to the best available estimate
of inflow volume. The Occoquan River at Occoquan gage site was the best available
estimate of inflow to the Occoquan reservoir since it was located near the site of the
current dam. Six regression models were developed corresponding to low-, medium-,
and high-flow intervals in the periods October through April and May through
September. The October through April low-, medium- and high-flow regression models
predicted inflow volume within -1.3 to +0.6 percent of that predicted by the Occoquan
gage, and the May through September models' results were between -9.2 to +0.8 percent
of the Occoquan gage. During the periods when there were active gages in the Occoquan
Reservoir watershed and the area-adjustment models could be used, those models
predicted inflow volume within -0.5 to +2.6 percent of that predicted by the Occoquan

River at Occoquan gage.

Table 6 summarizes the calculated daily inflows to the Occoquan reservoir by month
from Qctober 1927 through September 1996. Figure 5 summarizes annual inflow to
Occoquan Reservoir. Data are available in electronic format from ICPRB for both daily

and monthly inflows.
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Appendix A: Occoquan inflow regression-model
development (1927-1937)

Description of regression models

No stream-flow gage information exists on the Occoquan watershed in northern Virginia
during the critical time period between 1927-1937. However, flow records do exist for
the Rappahannock River during that period. A series of non-linear regressions was
developed for low-, medium-, and high-flows for the periods May through September and
October through April between gaged flow on the Rappahannock and Occoquan rivers
during October 1, 1937 to December 31, 1955. The independent variable was flow on the
Rappahannock River at Kelly’s Ford. The dependent variable was flow on the Occoquan
River at Occoquan. These regression relationships were applied to the flow on the
Rappahannock at Kelly’s Ford to create a flow record for the Occoquan River at
Occoquan gage between October 1, 1927 and September 30, 1937. The flows predicted
by the regression equations were further adjusted by an area-adjustment factor of 1.038
(equals 591.9 = 570.0) to convert Occoquan River at Occoquan flow into reservoir
watershed inflow.

Extending the regression data set

There were two USGS gauging stations in the Rappahannock watershed that were useful
for the regression analysis during the time that the Occoquan River at Occoquan USGS
gage was operational (between October 1, 1937 and December 31, 1955). These stations
were the Rappahannock River at Remington and the Rappahannock River at Kelly’s
Ford. Since the regression analysis was based on a single independent variable (flow on
the Rappahannock River at Kelly’s Ford), flows on the Rappahannock at Remington
were adjusted to simulate flows on the Rappahannock at Kelly’s Ford for the period 1952
to 1955. This flow adjustment allowed for regression over the maximum number of
overlapping data points with that of the Occoquan River at Occoquan gage. Preliminary
model validation work suggested that a better prediction of Occoquan River at Occoquan
flow could be obtained when the extended data set was used.

The Rappahannock at Remington station is located very close to the Rappahannock at
Kelly’s Ford gage site and flow at the two gages is well correlated (R squared = 0.990,
Figure I). A relationship between the two gages was calculated by comparing the total
volume of flow during the overlapping period when both gages were operating. The ratio
of the cumulative flow at Kelly’s Ford divided by the cumulative flow at Remington from
October 1, 1942 to September 30, 1952 was 1.04]1. Flow at Remington was converted to
an equivalent flow at Kelly’s Ford by multiplying the Remington flow by this conversion
factor, Figure II shows an example hydrograph comparing the simulated flow at Kelly’s
Ford (i.e., the adjusted flow at Remington) with the gage flow at Kelly’s Ford.
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May through September medium-flow model

Special consideration was needed for the medium-flow, May through September model.
During the summer, heavy thunderstorms can occur on the Jocal watershed scale, whereas
wintertime storm fronts are usually much larger and encompass both watersheds. Local
summertime thunderstorms can obscure the relationship between normal flows,
particularly at the medium flow range (as based on an examination of preliminary model
validation results). To assist in predicting the summertime flow in the Occoquan,
precipitation records for the Occoquan and Rappahannock were obtained and local
Occoquan thunderstorm events were removed from the calibration data set for the
medium-flow regression. Seven data points were removed from the medium-flow
calibration data set, from a total of 622 calibration data points. Table I lists each data
point and shows the sum of the current and antecedent precipitation for both watersheds.

Table I: Data points removed from the medium-flow May through September calibration

data set.

Date Flow on Flow on the | Sum of current-day | Sum of current-day
Rappahannock |Occoquan R.| and 2-day antecedent | and 2-day antecedent
at Kelly’s Ford | at Occoquan precipitation at precipitation at

(cfs) (cfs) Manassas station in | Culpeper station in

Occoquan watershed Rappahannock

(in) watershed (in)
7/11/42 268 1340 1.25 0
6/2/44 209 642 0.75 0.04
7/18/45 380 10500 3.35 0.84
7/19/45 350 3340 3.99 1.29
7/20/45 300 2990 2.27 0.45
6/9/47 470 1140 2.01 0.94
7/16/50 420 1570 0.93 0.14

The calibration graphs and calibration curve equations are shown in Figures III through
VIIL. The May through September medium flow calibration graph shows the data points
in Table I that have been removed from the calibration data set.

Comparison to prior model

An earlier ICPRB model was used to predict flow at the Occoquan River at Occogquan
gage (Q,), based on gaged flow on the Rappahannock at Kelly’s Ford, Q. The regression
relationship was assumed to be of the form Q.= aQP. When regressed over the entire
range of Rappahannock flows, a model of this type tends to over-predict low-flows.
During the drought of record (between June of 1930 through January of 193 2), the prior
model predicted a total inflow of 31.8 billion gallons (BG) and the revised model
predicted a total inflow of 29.0 BG (-9.0 percent).
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