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CHAPTER 1

DAILY MUNICIPAL WATER USE FORECASTING:
A STUDY OF THE

WASHINGTON, D.C METROPOLITAN AREA



1.1 INTRODUCTION

As severity of drought increases, so does a municipal water
system’s risk of not fulfilling its water obligations. Drought
is generally defined as a deficiency of water over a given
geographic area during a certain period of time. A more
specific viewpoint supported by water management is that of
drought as a function of both water supply and demand. When
incoming supply is greater than outgoing demand, barring
flooding, a favorable surplus of water will exist. When the
opposite is true, a deficit will result that can strain the
reliability of a system.

A better understanding of the stochastic nature of both
water supply and demand can greatly facilitate the efficient
management of water resources. On the supply side, much work
has been devoted to identifying the probabilistic nature of
precipitation and stream flow. Results have not only been
intended to predict water supply, but also for other purposes
such as assessing flood frequency. Historically, the
probabilistic analysis of water demand has received less
attention. 1It, however, has attracted increasing concern with
the recognition that only by simultaneously analyzing the
probabilities of supply and demand can the vulnerability to
system failure be accurately viewed.

This chapter deals with daily municipal water use
forecasting based on probabilistic analysis of past experience.
The benefit of using a relatively short time resolution (days)
is twofold.

1) Critical Situations. When a water system is in danger of
delivery failure or of loss of pressure, management’s analysis
of potential options can be enhanced by short-term daily water
use forecasts. Forewarning is useful in decisions to enact
water use restrictions, such as temporary peak water use charges
(Fairfax County, Griffith [1982]), percentage curtailment from
historical use (Los Angeles, Emergency Water Conservation Plan
{1977]1), and lawn sprinkling restrictions (Fort Worth, Anderson
et al. [1981]), or even when to trigger public relations
campaigns on conservation (California, Berk et al. [1981]).
Forecasts can be used to decide when to utilize marginal
supplies and when to obtain outside sources. Daily water use
models might even assist in a water system’s scaling and
sequencing of infrastructure capacity to more effectively handle
potentially critical situations. A water system, in a manner
similar to the electric industry, sizes its operations to meet
peak use. Facilities designed on the basis of only the maximum
day use in a given year (Howe and Linaweaver [1967], Hughes
[1980], Weeks and McMahon [1973) may conceal important dynamic
implications. Capacity sized for a single maximum day may fail
if surrounded by other nearly maximum days. The forecast
pattern derived from a daily model may well convey useful
information regarding frequency and duration of such critical
situations.

2) Operations., More efficient allocation of existing
resources can be brought about by using daily water use
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forecasts. Water that is stored a distance away from where it
is demanded has an inherent transit time. In the absence of
significant buffers, the farther the releases deviate from
actual use, the more error and potential waste in the system.
Better forecasts of water use can decrease these errors.

The objective of the chapter is to establish an
understanding of the basic factors driving water use in the
Washington, D.C. Metropolitan Area. A modeling framework is
constructed to this means. The ultimate goal in undertaking
this task is to create a short-term forecasting model to help in
an operational setting; short-term being approximately defined
as up to 7 days. A simplified forecast model is developed in
Chapter 2.

Before starting the modeling procedure, a review is made of
the publications on water demand analysis. Learning from the
past sets the foundation on which to build.

1.2 LITERATURE REVIEW

In a review of the literature, over 50 empirical water
demand studies are identified (Figure 1.2). Citations are
obtained both from a search through the Selected Water Resources
Abstracts data base and by inspection of bibliographies as
papers are found. Each study is examined and classified with
respect to three primary categories: time resolution,
explanatory variables, and model estimation.

1.2.1 Time Resolution

The studies reviewed differed in their time horizons. The
dependent variable of water use included annual, seasonal,
monthly, and daily time resolutions. The vast majority of the
studies are either annual or monthly, and it is striking that
only Anderson [1980], Maidment et al. [1984a, 1986], and Steiner
(1984] constructed daily models.

1.2.2 Explanatory Variables

Water use is dependent on a vast number of individual
decisions embedded in a complex underlying process, where both
physical and psychological time-dependent variables are
involved. To better understand variations in water use, a
functional relationship between water use and its more
significant and quantifiable explanatory variables needs to be
identified. The literature suggests both weather and
socioceconomic forces.

I. Weather. Air temperature, precipitation, evaporation, and
soil moisture deficit have been linked to water use.

All the studies using air temperature find it to have a
positive relationship with water use. As temperature increases,
communities demand more water for cooling, lawn and shrub
sprinkling, and other related purposes. Most studies base their
observations on average daily temperature. Only Camp [1978],
Maidment et al. [1984a, 1984b, 1986], and Steiner [1984] use
maximum daily temperature.



Precipitation has a negative or inverse relationship with
water use. The more it rains, the less water is demanded. A
variant of the quantity of precipitation is to treat rainfall as
a binary variable (rain/no rain). This implies that there is a
threshold level beyond which water use is relatively insensitive
to precipitation magnitude. Danielson [1979] uses the number of
dry days in a month as an explanatory variable for water use,
but finds this variable to be less effective than accumulated
rainfall. Steiner [1984] finds the number of antecedent dry
days (rain < .1 inch) to have significantly greater explanatory
power than same day precipitation in a daily model.

Evaporation has a positive relationship with water use;
Grunwald et al. [1976] and Maidment and Parzen [1984a, 1984b]
find evaporation to be a significant factor. Other studies
attempt to capture the potential soil moisture loss due to the
combination of evaporation and plant transpiration, creating a
moisture deficit variable defined as evapotranspiration minus
effective rainfall. Evapotranspiration is computed using the
Thronthwaite method in all but the Anderson [1980] study where
the Jensen-Haise equation is used. Effective rainfall is
defined alternatively as actual rainfall (Agthe and Billings
[1980], Morgan and Smolen [1976], a set percentage of actual
rainfall (Berry and Bonem [1974], Howe and Linaweaver [1967],
and as a nonlinear function of actual rainfall (Carver and
Boland [1980]).

Some studies attempt to address the dynamic forces
connecting water use with weather. Anderson et al. [1980]
distribute the impact of precipitation over a period of several
days in their soil moisture deficit variable instead of relating
it to a single day’s use. They find an impressive improvement.
Maidment et al. [1985, 1986] conclude that the occurrence of
rainfall causes an initial step change reduction in water use
that diminishes over time. They also find a dynamic response to
temperature, but to a lesser degree. Hansen and Narayanan
[1981] lag both precipitation and temperature by one period in a
monthly model and find both to be insignificant. They suggest
that a monthly time frame is too to broad to capture dynamic
responses.

For the studies with intra-year analysis, seasonal effects
are commonly identified. The winter is often associated with
base use, comprised of domestic or indoor use that is relatively
insensitive to weather. Summer is characterized as base use
added to weather sensitive outdoor, or sprinkling demand. Some
studies deal with this cycle by analyzing the seasons separately
(Ben-Zvi [1980], Carver and Boland [1980]), Howe and Linaweaver
[1967), Morgan and Smolen [1976], while others use a single
model with binary variables to distinguish different sub-periods
(Gibbs [1978], Morgan [1974], Young et al. [1983]. Hansen and
Narayanan [1981] used the percentage of daylight hours
(logarithmic transformation) to account for seasonal variations.

Other meteorologic variables such as cloudiness and wind
speed might also have important effects on water use.
Cloudiness, although difficult to quantify, is measured in a
categorical classification by the National Weather Service (e.g.
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sunny, partly cloudy, cloudy). The Weather Service also
commonly measures wind by the total wind movement in miles
through a continuous anemometer. No attempt to use these
explanatory variables is found.

II. Socioceconomic. A positive correlation between water use
and socioeconomic factors such as population, employment, number
of water connections, and income is indicated. One common
characteristic these variables share is their relatively slow
change over time; all display a relatively gradual influence on
water use. Another factor is the price of water. Most of the
literature regarding water demand is centered around its
relationship with price; in particular, an attempt to identify
price elasticity. This type of information is of particular
interest because price is a policy variable, subject to change
by water managers.

1.2.3 Model Estimation

All of the studies use a single equation format to relate
water use to its explanatory variables. However, because of the
diverseness of the type of data collected, the data’s time
resolution, and the possible model specifications, a variety of
techniques are employed.

Models with cross-sectional or pooled cross-sectional time
series data, or time series data with a relatively long time
resolution are often estimated using ordinary least squares
(OLS) regression. Although many functional forms are possible,
linear models or models made linear by conversions such as a
long-transformation (Gibbs [1978], Foster and Beattie [1579],
and Billings and Agthe [1980]) are necessary. The linear
requirement along with the assumptions on the error term of
being normally distributed, unbiased, homoskedastic, and
nonautocorrelated are quite restrictive. Nevertheless, the vast
majority of the literature incorporates the OLS method.

When analyzing data collected at equally spaced intervals
over time, it is common to find that observations are
autocorrelated. This violates one of the basic assumptions of
OLS regression leading to inefficient estimates and inconsistent
standard errors. 1In yearly models the degree of autocorrelation
is often insignificant and OLS regression is most applicable,
however, the shorter the periods of individual observations, the
greater the likelihood of encountering autocorrelation. Daily,
weekly, and even monthly time series of water use are likely
candidates for significant autocorrelation each having inherent
trends and cycles that can provide useful information in
modeling. When autocorrelation is present the sequence of
observations can be utilized.

Statistical transformation procedures, such as those of
Cochrane-Orcutt and Prais-Winsten, are available to improve the
efficiency of models with a first-order autoregressive structure
(Kmenta [1986]. In a monthly model, Hansen and Narayanan [1981]
apply the Cochrane-Orcutt transformation. This class of
estimation falls under generalized least squares.

Another way to approach time series is with regression in a
dynamic model using lagged water use as an explanatory variable.
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Both Steiner [1984] and Kher and Sorooshian [1986] apply
first-order (one period lag) models to their data, while Agthe
and Billings [1980] and Carver and Boland [1980] incorporate a
Koyck transformation where lagged effects are assumed to decline
according to a geometric distribution. These models better
utilize the data, but one has to be wary of the residuals still
meeting all of the basic assumptions of OLS and in particular
that the model specified leaves a nonautocorrelated residual
series.

The last general approach involves the use of autoregressive
and moving average processes. An autoregressive process is
similar to the dynamic model stated above in that the current
observation is related to a weighted set of past observations.
The moving average process relates the current observation to a
weighted set of past disturbance terms. The use of either or
both of these processes has the favorable property of describing
a complex underlying structure with relative ease and
simplicity. Salas-La Cruz and Yevjevich [1972], and Maidment et
al. [1985, 1986] after preliminary detrending and
deseasonalizing, fit an autoregressive process to water use, and
then remove weather influences on the residuals by OLS. Steiner
[1984] uses a similar approach, removing weather influences by
OLS, and then fitting an autoregressive moving average process
(ARMA(1,1)) to the residuals. In these last four studies, the
coefficients for the parameters are not estimated
simultaneously, but sequentially at each stage (cascade
approach). The estimators are not guaranteed to be efficient
under such circumstances, although they should be relatively
accurate. A more inclusive approach involves the use of
transfer function models (Box and Jenkins [1976]). Here the
output series (i.e. water use) is linked by linear filters to
input series (e.g. weather, white noise) simultaneously. Berk
et al. [1981], and Maidment et al. [1984a, 1984b] take advantage
of this flexible and encompassing approach.

il =85S, DESCRIPTION OF THE WMA WATER SUPPLY SYSTEM

The area under investigation includes the three largest
municipal water utilities in the Washington, D. C. Metropolitan
Area (WMA). The Washington Suburban Sanitary Commission (WSSC)
serves the counties of Montgomery (except Rockville) and Prince
Georges in Maryland; the Fairfax County Water Authority (FCWA)
serves Fairfax County and Alexandria City in Virginia, and the
Washington Aqueduct Division (WAD) serves the city of
Washington, D.C.. The area is shown in Figure 1.1.

Daily water production data, provided by each utility,
measures the raw water pumped (MGD) into the treatment
facilities. Production data can only serve as a surrogate to
consumer water use as system losses and gains (losses) to short
term buffers in the distribution system, such as storage tanks
and small reservoirs, are included. The alternative of
eliciting daily consumer use data is rarely possible as
recordings are available only for customer meters read on a
monthly, bimonthly, or quarterly billing cycle. Two aggregation
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processes occur in this analysis: the aggregation of production
data over all three utilities, and within each utility the
aggregation of all user classes. There is merit in delineating
individual utility differences and in making distinctions
between residential, commercial, industrial and public
categories, however these issues will not be pursued here. Data
is obtained for the thirteen year period 1974-1986.

The motivation behind this study is to develop a daily water
use model to serve as input to an optimization procedure for
obtaining multireservoir operating rules in the basin. Growth
in the WMA without major new water supplies has placed a premium
on careful utilization of existing water resources (see Chapter
5). Demand plays an important role as there is a lag time
between the releases at reservoirs and the intakes from
treatment plants. There are four major water supply reservoirs
within a 1 day travel time (H.T. Duckett, Little Seneca,
Occoquan, and Tridelphia) and two with an approximate 5 day
travel time (Jennings Randolph and Savage River). If more water
is released than demanded, the excesses will no longer be
available for water supply as they are carried into the
Chesapeake Bay. Conversely, if insufficient water is released
there is a failure in meeting demand. The situation is a
delicate balancing act where better management will stretch the
yvield of existing water supplies.

Increasing yield has two practical ramifications: one, it
can extend the life of the existing capacity, and two, the
proportion of a reservoir allocated for water supply can be
lowered while still retaining the same delivery reliability.
This is advantageous in a multiobjective context, where freed
reservoir space can then either be allocated to further increase
delivery reliability (supply), or for other competing objectives .
such as flood protection and water quality.

1.4 MODELING APPROACH

It is proposed that water use is constituted of three
components :

Water Use = Trend and Cycles + Exogenous Influences
+ Stochastic Residual

A model for each of the first two components is presented in
this section while the remaining component, stochastic residual,
is dealt with in the subsequent chapter on forecasting. To
identify long-term trend and various cycles in the data a
calendar model is constructed; the word calendar. being
indicative of the temporal relationships sought. Exogenous
influences are functionally related to water use by a causal
model; the word causal pertaining to cause and effect
relationships. In this report, weather measures are examined.

The parameters of the calendar and causal models are
estimated twice because of interdependence. The estimates
derived for the calendar model will have an influence on
estimates for the causal model and vice versa. This circular
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dependence can be handled in a two stage approach: the first
stage responsible for identification and initial estimates, and
the second for re-estimation given improved starting conditions.
The second stage also investigates time-varying properties of
the estimates.

1.4.1 STAGE 1.
I Calendar Model

This section identifies temporal trends and patterns in the
time series following a multiplicative method suggested by
Majdment et al. [1984a, 1984b], but more closely resembling
techniques developed in Chapter 2. Trend and cycles are
comprised of four components.

Trend and Cycles = Yearly Trend + Seasonal Cycle
+ Day-of-Week Cycle + Holiday Cycle

A. Yearly Trend

In this model, a year is defined as the 2l-week period (147
days) beginning with either the first or second Sunday in May,
and ending on a Saturday in late September. The choice of two
Sundays is needed to consistently line up holidays in the same
week as discussed later in the holiday cycle section. This
period corresponds to the season of peak water use when forecast
information is of the most importance.

Dj (t) denotes water use in year i on day t. Mean daily
water use in year i, Y;, can be constructed from:

147
Y; = 147-1 ¥ Dj(t) i=1...13

t=1

For the peak seasons from 1974 to 1986 in the WMA, Figure
1l.3a shows the original daily data (Dj(t)) and Figure 1.3b the
average daily water use (Yj) for each season. A clear
increasing trend is displayed. The factors changing Y; from
year to year are thought to be predominantly socioeconomic. The
increasing tend in Y; being primarily related to increasing
population in the service area. Since the socioeconomic factors
are characteristically gradual in their change or at least their
change has only a gradual impact on water use (e.g. price), they
are not included as explanatory influences in inter-peak season
analysis. They are allowed to change from year to year, as
captured by Y;j, but are assumed to have a relatively constant
impact throughout the peak seasons themselves.

Another factor possibly causing fluctuations in Yj; is
weather. Water use rises for peak seasons characterized as hot
and dry and drops for those cool and wet. Deviations from
normal weather conditions is the subject matter of the causal
model and its impacts will be accessed there. The calendar
model is based on the average response to weather. 1In the first
stage, all peak seasons are assumed to receive average weather
conditions. This overly optimistic assumption is relaxed after
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the results of the causal model allow for the removal of
weather-related deviations.

B. Seasonal and Day-of-Week Cycle

The intra-year cycles are patterned and deterministically
expressed by a unit demand factor, m(t), that displays the
underlying calendar structure of the time series. The objective
is to capture the consistent behavioral patterns of water users
under average weather conditions. (For details see Sections 2.2
and 2.3 of Chapter 2.)

In this study, m(t) is comprised of both weekly and
day-of-week demand factors.

m(t) 3 qj°Pk (j—l)‘7+k=t, j=l.-..l47, k=1.o-7

The weekly demand factor, q5s and the day-of-week demand
factor, px, can be estimated by:

13 7
&5 = (7-13)~1 3 3 [Di(7-(3-1)+k) / ¥i] 3= 1...21
i=1l k=1
13 21 : 7 )
P = (21-13)=1§  §(Di(7-(3-1)+k) / (771 1 Di(7°(3-1)+s)))
i=1 j=1 s=1
k=1...7

~

The estimator gs is a measure of the average fractional
ratio of week j to its corresponding Y; over all years. Figure
1.4 graphs the weekly demand factors for all weeks; q4 with
coefficients greater than 1 have weekly averages over %he mean
while coefficients less than 1 are under the mean. A definite
bell-shaped seasonal pattern is depicted.

The estimator py portrays the day-of-week differences in a
similar manner. The average fractional ratio of day-of-week k
to its corresponding weekly average is constructed. The
day-of-week pattern displayed in Figure 1.5 shows weekdays to
have higher use than weekends, which is probably caused by the
influx of workers to the WMA employment centers.

The appropriateness of this type of multiplicative
detrending model depends on two structural assumptions: namely
that the weekly and day-of-week patterns remain constant over
time. These properties along with an investigation on holiday
cycles are analyzed in depth with the calendar model in state 2.
At that point weather-related deviations are removed to better
highlight the underlying calendar structure.

A new time series, Zj(t), is created by subtracting the
original series from its calendar based predictions.

Zi(t) = Di(r) - Yi'm(t)



The result of the calendar model’s decalendarizing is a 57
percent reduction in variance. The new series, as graphed in
Figure 1l.6a, appears to be fairly stable in its structure over
time. Because of the way the calendar model is designed, the
series fluctuates about its mean of zero. The standard
deviation for each peak season is graphed in Figure 1.6b.
Although relatively high in 1986, no distinctive alteration in
the standard deviation is uncovered over time. This supports
the notion that the series is reasonably stationary, at least in
the wide sense of the first two moments.

IT. Causal Model

The objective of this section is to develop a model
describing the cause and effect relationship between the
decalendarized water use and explanatory influences. A
requirement of the approach undertaken is that it be explicitly
probabilistic; this will allow confidence statements about
forecasts to be made. The type of variable sought should
explain deviations from the stated normalization given from the
calendar model. They should vary from day to day in a way that
explains the day to day changes in water use. Physical
alterations in the environment relating to weather factors are
considered both because of intuitive appeal and strong empirical
evidence in the literature. A single equation model is
investigated with decalendarized water use as the dependent
variable, weather variables as the independent, and a random
disturbance component modeled in an autoregressive moving
average (ARMA) framework. This approach is well suited to the
autocorrelation exhibited in time series data unlike other
techniques, such as ordinary least squares, where assumptions on
the error term are more restrictive.

To quantify weather, the two most common and widely observed
atmospheric elements are used: temperature and precipitation at
the earth’s surface. Maximum daily temperature (©F) is selected
over average daily temperature as water use, and in particular
sprinkling demand, is postulated to be more responsive to
maximum than average recordings where extremes are attenuated.
The maximum daily temperature observations are subtracted from
their corresponding long-term weekly averages as compiled from
1974 through 1986; putting data in the form of deviations is
necessary because inferences will be made about deviations from
the calendar normalization which is based on average responses.
Since precipitation follows a rather uniform distribution
throughout the period involved, the transformation into
deviations is not undertaken. The temperature and precipitation
recordings utilized in the models are calculated from the
average of observations at the weather stations at Beltsville
and Upper Marlboro (Figure 1.1); two sites are deemed more
representative than one. The data are obtained from
publications of the National Weather Service, National Oceanic
and Atmospheric Administration (NOAA), with occasional missed
observations estimated by interpolation and correlation with the
other station to give a continuous record for the 1974-1986
period.
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Another descriptive element, daily evaporation, is also
available from NOAA as calculated by the standard Weather
Service-type pan of 4-foot diameter. Evaporation is not pursued
here for three reasons. First, evaporation has collinearity
problems with temperature that can lead to unstable parameter
estimates. Second, Steiner [1984] finds inferior results in a
similar study on the same area, and lastly, because forecasts of
evaporation are not readily available.

The underlying process linking water use to temperature and
precipitation is thought to be fairly intricate. Both nonlinear
and dynamic responses are investigated.

A. Nonlinear

The common assumption of a simple linear relationship
between variables is often based more on a computational than a
theoretical justification. It is possible, and most likely,
that some type of nonlinear model better replicates the true
interaction between water use and weather. The dilemma
encountered in constructing nonlinear models, other than
pragmatic reasons, is in its proper specification. There is an
infinite number of logarithmic, exponential, and multiplicative
combinations that can be tested.

One strain of nonlinear model is tested here; the
relationship between water use and weather variables is still
assumed to be additive, but the response over the entire range
of temperature and precipitation recordings is no longer assumed
to be constant. It is allowed to have a changing slope
approximated by piecewise linearization.

Temperature is segmented into three separate sections with
break points at 75 and 85 degrees. Since temperature deviations
from long-term averages are being implemented instead of the
actual observed values, a modification to the usual piecewise
linear model is needed. 1If both the long-term average and the
observed recording are contained on the same segment, say
between 75 and 85, then the deviation is allocated completely to
that segment. If the expected and the observed recordings,
however, are on different segments, then the deviation needs to
be divided and assigned to the appropriate segments.

Three variables are constructed to adhere proper
representation of the deviations to their corresponding
segments. Tj; represents the part of the deviation occurring
below 75 degrees, Ty captures the part of the deviation
resulting between 75 but less than 85 degrees, and T3 for
deviations from 85 degrees and higher. To illustrate the
formulation, if the expected temperature is 80 degrees and the
observed 95, then T;=0, T7=5, and T3=10.

Precipitation is also broken into three segments, but can be
handled in a more straightforward manner as the actual
precipitation recordings are used. The break points are set at
0.1 and 0.5 inches. ©Pj] represents the first 0.1 inches in a day
if any, P stands for the precipitation over 0.1 inches and up
to 0.5 inches, while P3 records the remainder over 0.5 inches.
For example, if precipitation is 0.7 inches, then P;=0.1,
P»=0.4, and P3=0.2.
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The selection of the number of piecewise segments and the
determination of where the break points reside are based partly
on empirical results from previous studies (Maidment [1985],
[1986] and Steiner [1984]) and partly on the discretion of the
modeler from examining biplots.

B. Dynamic

The weather information available for water use decisions on
a given day can be divided into three sources: past, present,
and forecasted. While correlation with past and present weather
variables has been previously examined, to the author’s
knowledge the use of future values has not been attempted. This
neglect may reflect the indirect connection between the two.
Individuals do not know the actual weather conditions in the
future, but forecasts by the National Weather Service are widely
disseminated by the media and may have an instrumental
influence. For example, if rain is predicted for tomorrow, it
may well affect some individual’s decisions on water use today
(e.g. delay lawn watering).

This model uses the observed realizations of the weather
variables for future leads instead of forecasts. Ideally,
forecasts should be employed since they are the information
available to individuals for today’s water use decisions. Using
future observed values is only a surrogate measure which should
be fairly accurate for the 1 day forecast and decline thereafter
because of declining skill in weather forecasting.

C. Model Description .
The general form of the causal model is as follows:

Zj(t) = a + ay(B)Ty,i(t) + aziB)Tz,i(F) + a3(B)T3,i(t)
+ b1 (B)P1,i(t) + ba(B)P2,i(t) + b3(B)P3,i(t)

+¢~1(B)e(B)aj(t)

where
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Z2i(t) = decalendarized water use in year i day t
a = intercept term
F1,..,F6 = number of lead days
di; o 6 = number of lag days
Ty,i(t) = temperature deviation < 75 in year i day t
T2,i(t) = 75 < temperature deviation < 85 in year i day t
T3,i(t) = 85 < temperature deviation in year i day t
P1,i(t) = precipitation deviation <0.1 in year i day t
Py,i(t) = 0.1 < precipitation deviation <0.5 in year i day t
P3,i(t) = 0.5 < precipitation deviation in year i day t
aj(B) = al,FlB-Fl + al,Fl-lB—Fl+l ol al,LlBLl
as(B) = alezB_F2 + a2,F2—lB_F2+1 + oae. + azleBL2
a3 (B) = a3’F33-F3 + a3,}3.3_lB_F3+l + ...+ a3,L3BL3
by (B) = bl,F4B_F4 + b1’F4_lB-F4+1 o+ b1,L4BL4
by (B) - bz,FSB_Fs + bles_lB—F5+l ..+ b2’L53L5
b3(B) = b3’FGB-F6 + b3,F6-lB—F6+l +oa.. o+ b3’L613L6
$(B) = autoregressive operator of order p: 1 - ¢1Bl - i = ¢po
6(B) = moving average operator of order q: 1 - elBl - e, = quq
B = backward (forward) shift operator (e.g. Bx(t)=x(t-1) and
B-lx(t)=x(t+1))
aj(t) = white noise residual
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D. Identification
a1(B), az(B), a3(B), by(B), by(B), b3(B), and ¢~1(B)e(B) are

commonly referred to as transfer functions. They represent a
linear aggregation of inputs at various points in time which
correspond to an output at a particular time. The particular
impacts from a given input in relation to time is often called
an impulse response function with the coefficients in front of
the backward shift operator in a transfer function constituting
its makeup.

The identification process pertaining to the structural
variables deals with adequately approximating the finite length
of the lead (F1,...,F6) and lag (Ll1l,...,L6) periods of the
impulse response. When do future values (forecasts) become
insignificant in predicting today’s water use? How far back in
the past is useful information drawn?

The initial ranges for the weather variables are set both
from appeal to physical considerations and statistical analysis.
The length of a lead periocd is limited by the availability of
accurate weather forecasts. Since forecasts are generally
considered to have little credibility after 5 days, if that, the
lead variables are naturally bound to be less. Concerning the
lags, as heat dissipates into the atmosphere in a relatively
short order, the latent effects for temperature are surmised to
not extend past a few days. Precipitation has more storage
properties (water held by plants and soil) which can lead to a
longer lag. Statistically, the cross-correlation functions
between the input series and water use give a rough
approximation to the impulse responses. The application of
prewhitening filters are employed to cancel correlation dynamics
of the input series which are known to corrupt the estimates.
The cross-correlation functions coincide with a priori beliefs
based on physical considerations and provide initial
specification. To maintain a clear interpretation of future
results, estimates of the coefficients in the transfer functions
are generated from the decalendarized data and not the
transformed (prewhitened) data. Prewhitening is an artifact of
identification only.

The identification of the disturbance term’s transfer
function is handled differently. The residual aj(t) is
dynamically filtered through the ratio of two polynomial
backward shift operators: the numerator known as a moving
average operator and the denominator as an autoregressive. The
identification of these operators is facilitated by analyzing
the autocorrelation function (ACF) and the partial
autocorrelation function (PACF) of the residuals of the
structural model (i.e. the model without the ARMA process).
These two devices are complementary and make up the backbone of
time domain identification. From them the degree of the
autoregressive process (p) and the moving average process (Qq)
can be approximated. 1In short, an autoregressive process tails
off in the ACF, and has a cut off after lag p in the PACF. A
moving average process exhibits the reverse by having a cut off
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after lag q in the ACF, and a gradual tailing off in the PACF.
Mixed processes tail off in both the ACF and PACF (Box and
Jenkins [1976]).

E. Estimation

It is possible to estimate each coefficient individually in
the causal model, however, by placing some restrictions on the
coefficients the number of parameters can be substantially
reduced. The advantages to such an approach include not only a
more parsimonious model, but also a better way to handle the
moderate multicollinearity inherent in the time-distributed
variables. Multicollinearity increases the standard errors of
the coefficients due to the lower information content derived
from correlated data. The basic desirable properties of the
estimators (unbiased, consistent, and asymptotically efficient),
however, do remain intact. The best way to work with
multicollinearity is to have an abundance of data; fortunately
this is the case in this analysis. It is also beneficial to
minimize the number of parameters as individual estimation of
lengthy distributed responses uses up a large number of the
degrees of freedom. A number of techniques are available to
deal with this common dilemma in time series applications. One
technique forces the coefficients to lie on some low order
polynomial (e.g. Almon lag). Another, which is used here,
forces the coefficients to lie on a ratio of two polynomials
(i.e. rational lag) which is the same type of structure imposed
on the disturbance term.

Estimation of the parameters is based on the principle of
maximum likelihood (ML). The OLS approach is not suited for
models with the type of lagged disturbance term presented, so
ML is employed (Harvey [198la]). The estimators derived are
those values that would generate the observed sample of
decalendarized water use most often. They are statistically
efficient. The maximization of the likelihood functions is done
via nonlinear least squares using Marquant’s method implemented
on SAS software.

The data is initially utilized by concatenating the 21 week
period under consideration from each year into one time series.
Since observations are going to be related to past observations,
a problem with wrapping surfaces; the first days from one year
are drawing information from the last days of the previous year.
This connection delivers spurious results as the dynamic
structure between the end of a year and the start of the next is
not the assumed one day, but eight months. The magnitude of the
problem depends on the length of the lag. Since there are 12
discontinuities in the 13 years of data, every additional lag
creates 12 more spurious results. For lower order processes,
the concatenation should have little effect. A five period lag,
for example, has about 3 percent of its observations influenced
by the wrapping of years.

F. Diagnostic Checking

Once a model has been identified and estimated, it is
analyzed for goodness of fit. For the structural parameters,
this concerns the length of the lead and lag periods as well as
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the order of relevant rational lags. It is desirable to
maintain only variables that provide a significant contribution
to the model. T and F tests are useful in the selection
process.

Regarding the disturbance term, if the complete model
successfully captures systematic movements in the data, the
residuals should essentially be uncorrelated random variables
with constant mean and variance, commonly referred to as "white
noise". Two different types of significance tests are used in
checking if a white noise series results from the selection of p
and g in the ARMA process. One type examines the sample
autocorrelations and partial autocorrelations of the ACF and
PACF of the residual to see if they lie within a stated
theoretical confidence interval of a white noise process. The
second type involves a chi square test on the first s
autocorrelations computed using the formula suggested by Ljung
and Box [1978]

2 - = 2 k
Xs-p-q = B(n+2) kéir k / (n-k)

where n equals the total number of observations, p the number of
autoregressive terms, g the number of moving average terms, and
r2k the kth squared sample autocorrelation. This device gives
the probability of different intervals of autocorrelations
coming from a white noise process.

Since it is common that different combinations of p and g
can pass the white noise tests, some added criterion is needed
in the selection stage. Selecting the ARMA that displays the
lowest standard deviation of the residual is appealing, however,
just by adding more p and g terms to any process this can
usually be achieved. A more prudent approach involves using the
Akaike’s Information Criterion (AIC) (Akaike [1974]). The AIC
is computed from

AIC = -2log(L) + 2k

where L is the likelihood function and k is the number of free
parameters. A common decision rule is to select the model that
minimizes the AIC; the first term seeks to maximize the
likelihood and the second to penalize models not suitably
parsimonious.

G. Results

Repetition of the identification, estimation, and diagnostic
checking procedures leads to a suitable model whose results are
examined here.

Temperature. The impulse response functions of the
temperature variables are shown in Figure l1l.7a. The
coefficients lie between a 2 day lead and a 1 day lag; the 1
day lag variables are not significantly different from zero, but
are included to illustrate this surprising point. Because of
this relatively short time span involved, the coefficients are
estimated individually.
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The responses are somewhat symmetric and centered on the 1
day ahead observation. This is interesting as it implies
tomorrow’s temperature has more influence on water use today
than today’s temperature. Water use decisions are being
primarily based on anticipation of upcoming conditions. To
illustrate, people are watering lawns before they have a chance
to dry out, not after.

A distinctive nonlinear response from different temperature
ranges also stands out. Water use becomes progressively more
sensitive to temperature as temperature increases. For the 1
day lead variables, a 65 percent increase in sensitivity is seen
between T; and T; and a 130 percent increase between Ty and T3.

Precipitation. The impulse response functions of the
precipitation variables are shown in Figure 1.7b. Pj; is found
to be significant between a 2 day lead and a 14 day lag. The
transfer function for P; is a rational lag type as follows:

by(B) = (n1B=2 - ny-1 - n3p0 - m1Bl) / (1 - dB),

where ni, nj, n3, ngq, and d are parameters estimated. By
rewriting the denominator as an infinite geometric series and
grouping the backward shift operators, a description of the bj
coefficients distributed over time results.

B1(B) = (n1B=2 - nyB~l - n3B0 - nyBl) * (1 + dB + d2B2 + ...)
= (n1)B~2 + (nid-np)B-1 ¥ (n1d?-npd-n3)B0 + (n1d3-npd2-nzd-ng)Bl + ...

where
bj,2 = m
byj,1 = N1d2- ns
1.0 = nid4 - npd - nj3

b1,-1 = n3d3 - nyd? - n3d - ng

The distributed response for P; is skewed right and centered
on the contemporaneous recording; today’s precipitation has the
most influence on today'’s water use. The first two lead
variables are significant which again supports the belief that
water use decisions are in part functionally related to future
weather. As for the past, the impact from P; is felt for the
entire 14 days.

Precipitation over 0.1 inches has almost no influence on
water use. P9 and P3 are most prominent at the 1 and 2 day
lags, but Py is still insignificant at both lags while P3 is
only significant (.10 level) for the 1 day lag and has the
opposite sign expected.

Intercept. The intercept term counterbalances the
temperature and precipitation influences in the long-run. For
temperature, the sum of the deviations from normal equals zero,
but since the positive deviations are generally weighted higher
because of the nonlinear response an overall positive impact
results on the data. To neutralize this effect so as to stay
consistent with the average weather response criteria of the
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calendar model, a portion of the intercept team is committed.
In this case, -5.89 neutralizes the temperature effects over the
course of the model to zero.

As precipitation takes on only positive values and is
dominated from the negative response of the first 0.1 inch, the
event of rainfall drops water use. The average reduction for a
given day derived from the 2 day lead to the 14 day lag
responses equals 24.73 MGD. The interpretation of this number
is that it is what is added to decalendarized water use in the
event of all days in this scope being dry. 1If wet days are
recorded but their influences amount to less than 24.73, the day
is classified as drier than normal. If their influence exceeds
24.73 the day is classified as wetter than normal.

The overall impact of the intercept term keeps the causal
model in balance with the calendar model. The model’s intercept
term comprises the summation of both the temperature and
precipitation intercepts (i.e. -5.89 + 24.73 = 18.84).

Disturbance. The disturbance term is set up in the form of
a random shock model where past error terms are related to
current decalendarized water use. The impulse response function
of the disturbance term for the first 7 lags is shown in Figure
l1.7c. They are calculated from an ARMA(1l,3) specification in a
manner similar to that used with the P; variable. The 1 day lag
error has the most influence with over 50 percent of yesterday’s
under or over prediction being forwarded to today’s prediction.
The lag errors monotonically decline in influence over time.

The reliance on past errors stems from three general
sources. One, incorrect specification of the weather model
both in structural form and in omission of other relevant
meteorological variables. Two, possible short-term shocks not
explicitly addressed such as short-term conservation programs.
And three, misspecification of the calendar model. Since these
shocks can have persistence over time, incorporating past errors
as information into the current prediction allows for partial
adjustment for these unincorporated factors.

The model summary in Figure 1.8a lists the coefficients with
their standard errors along with analysis of the residuals. The
causal model explains an additional 33 percent of the variance
over the calendar’s 57 percent for a total of 90 percent of the
original data’s variance explained. The chi square test and the
plots of the ACF and PACF shown in Figure 1.8b. indicate the
continued existence of some autocorrelation in the data, but it
is reasonably small and the more complex transfer functions that
are needed to ensure white noise are found to add no power to
the model based on the AIC. The residuals and the standard
deviation of the residuals by peak season are plotted over time
in Figure 1.9a and 1.9b respectively. Comparing both measures
with the time series prior to the causal model (Figure 1.6a and
1.6b) illustrates the noticeable reduction in variation. The
residuals appear stable and the differences in standard
deviation between seasons have been reduced.
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1.4.1 STAGE 2
I. Calendar Model

The input series into the calendar model in stage 2 is the
original water use series minus weather-related influences as
identified in the causal model from stage 1; this new series is
termed deweatherized. Deweatherizing has the advantage of
removing a sizable proportion of noise in the data which allows
for a more precise focus when determining underlying calendar
structure. The assumption made in stage 1 of weather not
affecting calendar estimates is relaxed.

A. Re-estimates of Parameters

New estimates for Yj qj, and px are computed using the
decalendarized data and compared to their original values.

Figure 1.10a plots both the original Yj and the
deweatherized Y; over time while Figure 1.10b lists the
breakdown of weather influences causing their departure. The
new Y; are smoother having less variation year to year. The
most notable difference between the original Yj £rom 1979 to
1980, can be partially explained by weather. The year 1979 is
not only wet but the coolest season in the analysis, while 1980
is the warmest. Over 40 percent of the variation between the
two years is attributable to weather.

The re-estimated qj plotted in Figure 1.11 show little
difference from the originals with the exception of a slight
decrease in weeks 17 to 20. Further investigation reveals that
this period receives slightly lower precipitation than the
seasonal average. The Calendar model captures this effect.

The pyx are plotted in Figure 1.12. As no particular
day-of-week is likely to receive significantly different
temperature or precipitation recordings from the other
days-of-week over the long-run, there should be no change in the
estimates after removing weather influences. No change appears.

B. Holiday Cycle.

There are three federal holidays in the period considered:
Memorial Day, Independence Day, and Labor Day. The hypothesis
is that there is a significant alteration in water use due to a
holiday. To check for this deviation, a separate set of px for
each holiday week is examined. Memorial and Labor Day are
consistent in that they always fall on a Monday, in week 4 and
18 respectively. Figure 1.13 shows the new set of py for
Memorial and Labor Day in comparison with the overall standard.
A significant drop is seen in the Monday demand factor in both
cases. Independence Day is in the 9th week, but is not
restricted to fall on any particular day-of-week. As only
thirteen occurrences of week 9 are available in the data set,
creating seven different sets of pyx, one for each day-of-week
concurring with July 4th, stretches inference. July 4th fell on
Tuesday and Saturday only once from 1974 through 1986. Because
of this, no special exceptions are made for week 9. A
significant alteration in the behavioral pattern of water use is
still suggested for July 4th, however, by the distinct drop in
the weekly demand factor in week 9 as shown in Figure 1.11.
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C. Time-Varing Properties

The underlying process establishing the calendar structure
is not necessarily static, and may in fact evolve over time.
There are two principal factors stimulating a structural change:

1) The reaction by water consumers to calendar orientation
changes due to changes in individual tastes and preferences,
available technology, land use patterns, and the like.

2) The WMA base of water users shifts in composition.
Relative changes in the user categories may affect the calendar
estimates for WMA as a whole, especially if the estimates differ
among the user categories. Since 1974, Fairfax County has grown
much faster relative to the other areas. As this takes place,
the estimates are expected to more closely resemble those of
Fairfax.

- To check for stability, subsets of g+ and px are analyzed
for significant differences. Figure 1.12 superimposes the
weekly averages of the first 6 years, the last 7 years, and
their composite average over the entire time period. The series
appear stable and in no week is there a significant deviation
(.10 level). Figure 1.15 superimposes day-of-week factors for
the first 5, middle 4, and last 4 years of data. A steady
flattening of the day-of-week pattern is detected, with the
weekends taking on a more prominent role at the expense of the
midweek days. The probable cause of this change lies in the
relative growth of the FCWA, which has higher use on the
weekends (Whitcomb and Boland [1986].

The calendar model in stage 2 is based on the updated Yi,
gy, three subsets of py and the two py associated with the
hoiidays. The estimates are listed in Figure 1.16.
Decalendarizing leads to a 55 percent reduction in the original
data‘’s variance; the modest lost in explanatory power over
stage 1 (2 percent) resulting from the abstention of the
estimates to respond to weather.

II. Causal Model
A. Re-estimation of Parameters

The causal model developed in stage 1 is re-estimated using
the updated decalendarized data. The temperature responses show
little change (Figure 17a) while the precipitation responses
have become slightly more sensitive (Figure 17b). The
information drawn from past errors in the disturbance term has
declined (Figure 17c), inevitably due to better specification of
the calendar model. The model summary in Figure 20 shows a
slight improvement in variance explained over stage 1. The chi
square test and the plots of the ACF and PACF indicate the
residual more closely resembles white noise.

Four different variations of the causal model are explored
in the quest of substantiating hypotheses on how certain factors
affect water use. The variations include: 1) changing the
number of weather stations from which weather information is
gathered, 1) omitting lead variables to evaluate the value of
forecasts, and 3) checking the stability of the parameters over
time.
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B. Weather Stations

The prior models utilized the average of weather
observations from two weather stations. Ideally, the number of
stations should be increased until achieving an adequate
geographic representation. Each station should further be
weighted for the purpose of constructing a weighted average;
the station representing the area with highest water use getting
the most weight and so on.

To gauge the sensitivity in the accuracy of modeling the WMA
water use to the number of weather stations weather data is
extracted, the causal model is estimated with the use of data
collected from only one station, Beltsville. This results in a
modest increase of 2.5 percent in variance due to inferior
representation. Two additional models are estimated for the
sake of revealing which variable, temperature or precipitation,
is more dependent on the number of stations. One model
incorporates temperature observations from the average of the
two stations and precipitation observations from only
Beltsville. Utilizing two stations for temperature is shown to
have little value as the variance of the residual is unchanged.
The other model uses Beltsville for temperature observations and
the average of the two stations for precipitation.  The results
of this model are very similar to the original model which uses
the two stations for both variables. This indicates that in
going from one station to two, the precipitation variable gains
in explanatory power while temperature is unchanged. This seems
logical as precipitation in the summers of the WMA is
characterized as a sporadic point process of localized
thundershowers. Significant rainfall in the WMA may elude
certain stations or a certain station may receive noticeable
rainfall while the rest of the WMA remains dry. This potential
problem is alleviated by utilizing more sample stations to
obtain a better overall measure of precipitation. Temperature,
on the other hand, is characterized as being more uniformly
distributed. The WMA is fairly homogeneous with respect to
elevation and other natural geographic attributes from which
temperature differentials usually arise. Statistically
speaking, the correlation coefficient (Pearson product-moment
correlation) between the two stations is .76 for precipitation
and .96 for temperature.

C. Value of Leading Variables

To evaluate the importance of future weather observations in
modeling today’s water use, the causal model is estimated
without the lead variables. The results in Figure 1.20 portray
an increase in variance of over 35 percent. This verifies the
integral nature of leading variables as an explanatory influence
which should not be omitted from consideration.

D. Time-Varying Properties

The estimates of the causal model may be time-dependent for
the same reasons as those listed for the calendar model
estimates: namely changes in behavioral response and in
composition of the WMA base of water users. To check for
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stability, the estimates of the causal model are mapped over
time. The time series is split into four subgroups consisting
of the first four years of the series in the first group, and
sequential three year groupings for the remainder. Any finer
division lacks the number of observations needed to give
suitable results. Figure 1.2la and 1.21b graph the estimates of
the structural variables over the four subgroups. As a whole
the estimates appear relatively stable with the possible
exception of the 1985-1986 period. This most recent period
displays an increased sensitivity to weather; this is
especially true in the 1 day lead variable for T3 and all of the
P; variables for precipitation.
1.4.3 Summary of Models

This section summarizes the results of the approach taken to
model water use. Figure 1.22 contrasts the original data with
the residuals from the calendar and causal models in both stages
by listing their standard deviations, variances, and
coefficients of determination (R2). Although the second
iteration did not remarkably out preform the first, it is
believed that the components comprising water use became more
accurately represented. The main beneficiaries in this
particular study turn out to be the Yj. Further iterations are
indeed possible and although no mathematical theorem on
convergence is presented, the improved accuracy of one model
should lead to the improvement of the other.

1.5 FORECASTING

The calendar and causal models describe the patterns and
interactions underlying water use. The description bases its
foundation on statistical analysis of historical data resulting
in estimates that fit the past. Explaining the past is
interesting in itself, but the major practical benefit lies in
the use of this knowledge in predicting the future. The
requirement for short-term forecasts motivates the
investigations reported here.

A forecast is defined as a prediction of a future state
conditional on certain assumptions holding true. 1In forecasting
water use by the modeling scheme presented here, a number of
assumptions are built into the models. A clear understanding of
these assumptions enhances the base on which opinions are formed
on the degree of credibility to be given for any inferences
rendered.

1.5.1 Assumptions

This section lists a number of the premises from which
conclusions are drawn. Although each one is unlikely to be
strictly valid, it is hoped that they are substantially correct.

1. The average daily water use for the peak season, Y;, 6 in
which forecasts are being made is assumed to be known before all
of the observations for that season are realized. This
necessitates the prior estimation of Y;. A separate model based
on long-term trend and some of the more prominent socioeconomic
variables is suggested. The vast amount of the literature cited
on water demand analysis addresses this type of issue. Changes
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in employment, population, income, and price, to name a few,
from the previous peak period may well help in prediction of the
average use in the current period. The compatibility between
long-range studies and the daily modeling procedure presented
here makes the natural divisions within the scope of demand
forecasting more manageable.

Uncertainty in the estimates of Y; should add error to the
results. The residuals derived from the combination of the
calendar and casual models on the historical data should have
less disturbance than the residuals when the value of Y is
uncertain. A negligible difference would be seen, however, if
Y; could be accurately modeled.

2. Estimates derived from the calendar and causal models
are assumed to remain constant or predictable in the future.
Now that the interactions of the past have been highlighted,
some reasonable projection of the estimates is needed. Since
the seasonal pattern by week displays remarkable stability
throughout the thirteen year period, it seems logical to assume
it will persist. On the other hand, the flattening of the
day-of-week cycle over time suggests the use of a set of py
derived from the more recent data. The estimates from the
causal models are relatively stable and should be good
estimators for the future. A forecaster might, however,
postulate that water use has become more sensitive to weather
based on the results from the 1984-1986 subset of data and hedge
forecasts accordingly.

3. Using observed recordings of temperature and
precipitation for the lead variables is assumed to provide the
same information as the forecasts themselves. Ideally, the
forecasts are better information as they convey the current
status of what water users perceive as future weather. To
illustrate their difference, a forecast of rain might affect
today’s water use even if rain does not end up occurring. In
any case, with the causal model only up to a two day lead for
temperature and precipitation is of concern. The weather
service has had good experience with such short-term
forecasting.

1.5.2 Residuals

Conclusions dealing with the precision and confidence of
forecasts are based on analysis of the residuals of the calendar
and causal models from stage 2.

Descriptive statistics of the residuals of the calendar
model are listed in Figure 23a. The residuals appear unbiased
with a mean of -0.1 (rounding error), skewed towards positive
deviation with a 0.77 skewness coefficient, and more peaked
(leptokurtic) in character than the normal distribution
indicated by the 0.55 kurtosis coefficient (3 characterizes
normal) and the Kolomogorov D statistic.

For forecasting purposes, the distribution of the residuals
is integral to any confidence statement made. The all too
common assumption of normality would, in this instance, led to a
misrepresentation in the confidence of a forecast. To help
describe the characteristics of the distribution at hand, a set
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of quantiles is included. These provide useful markers for
assessing the probability of water use being under or over a
selected amount. For example, there is a 90 percent probability
that a forecast conceived from the calendar model will not
underestimate water use by more than 42.4 MGD. This type of
information provides valuable input to the management of water
supplies. Looking at how models perform at their worst moments
is also informative; the residuals’ extremes are included in
Figure 1.23a.

The residuals of the causal model are statistically
described in Figure 1.23b. They are unbiased, symmetric, and
leptokurtic. Since the presence of a normal distribution is
again refuted, a histogram, quantiles, and extreme values are
presented to provide insight into the distribution.

These residuals are based on a one-step ahead forecast.
Forecasts of greater duration will be expected to provide less
precision because of two factors. The first is that since the
expected value of the errors of future forecasts is zero, the
information derived from the disturbance term is only based on
errors prior to the first forecasting period. Recalling that
the impulse response function of the disturbance term
monotonically declines over time (Figure 1.17c), these past
errors play a less significant role as the forecasting horizon
increases. This decreases the power of the model.

The second factor arises from the uncertainty involved with
future weather. The confidence placed on future water use will
largely depend on the accuracy of weather forecasts. This
accuracy, as demonstrated by the National Weather Service,
declines over time. At the present state of forecasting,
temperature and precipitation can be predicted with scome skill
up to five days.

There are a variety of measures used by the National Weather
Service in conveying the probabilistic nature of forecasts.
Point estimates and intervals with stated confidence bands are
common with temperature while quantitative precipitation
forecasts (QPFs) show the likelihood of occurrence of various
amounts of precipitation. Since the relationship between water
use and precipitation is fairly well represented by a
step-function, using the subset of the QPFs associated with what
is commonly referred to as the probability of precipitation
(PoP) of noticeable rainfall (>.01 inch) can simplify the
process.

When concern is focused on obtaining predictions for future
water use, using expected values of future temperature and
precipitation observations provides the best measure; expected

value gives both unbiased and efficient results. (It can be
shown that the mean is the point that minimizes squared
dispersion of any distribution (von Mises [1964]). Point

forecasts of maximum daily temperature and PoP forecasts for
precipitation can be substituted into the causal model to get
predictions.

Although these proceedings can lead to a multi-step forecast
for water use, the confidence in that prediction is not so
easily addressed. The distribution of the residual should
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increase in variance with increasing steps; the one step being
the best and declining thereafter until the weather information
available today (past, present, forecasted) loses value. At
that juncture, the calendar model alone becomes the best
available forecasting tool.

Two conditional cases are examined to bound the uncertainty
involved with future forecasts; the best case bases its
predictions on the assumption of perfect weather forecasting
while the worst case utilizes only past (already observed)
weather. Monte Carlo simulations are conducted to establish the
nature of probability density functions of residuals from
forecasts extending out to 14 days. The mean square errors
(MSE) of the two conditional cases are shown to increase over
time as plotted in Figure 1.24. The perfect forecast assumption
starts with a 14.2 MSE for the one day lead and monotonically
increases thereafter to approximately 17.8; the cause of the
increase due to decreasing information derived from the
disturbance term. The more conservative assumption of only
using past weather starts with a MSE of 16.6 which
asymptotically grows to 30.4 over time; the cause of the
increase due to decreasing information drawn from both the
disturbance term and past weather observations. It appears that
after 7 days the causal model no longer noticeably out performs
the calendar model under these circumstances.

Although the MSE is an informative measure in the
description of a distribution, other statistics can enhance the
characterization. This is especially true when the distribution
at hand deviates from the classical distributions (e.g. Normal).
Since the 5 day forecast is of particular concern in making
releases from two upstream reservoirs, an example of a more
exhaustive description of these forecasts under both conditional
cases is presented in Figures 1.25a and 1.25b. They are seen to
be unbiased, positively skewed, and leptokurtic. This type of
information is fundamental to probabilistic analysis of
operations. It conveys the stochastic nature of water demand in
a way that can be integrated into the decision making process
concerning reliability.

1.6 CONCLUSIONS

The approach taken to discern the forces driving water use
in the peak seasons of the WMA relies on the use of two
harmonious models: calendar and causal. A number of important
conclusions are drawn from their application.

1. The pattern of use by water consumers is at least
partially dependent on temporal orientation; yearly trend and
week, day-of-week, and holiday cycle have been identified.

2. The relationship between water use and the weather
variables is nonlinear. Water use is more sensitive to
deviations from temperature norms at higher temperatures. For
precipitation, the occurrence and not the magnitude of rainfall
is the paramount factor.

3. Water use is dynamically related to the weather.
Temperature’s influence generally ranges from up to a 2 day lead
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to a 1 day lag. Interestingly enough, tomorrow’s temperature is
the most influential on today’s water use. For the first 0.1
inches of precipitation, the significant influence rendered
ranges from a 2 day lead to a 14 day lag; the same day
precipitation exerting the most explanatory power.
Precipitation over 0.1 is found to have little effect.

4. Increasing the number of weather stations from which
weather information is gathered improved the quality of the
precipitation measure, but not temperature.
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CHAPTER 2

WATER USE FORECASTING:

THE RANDOM MEAN MODEL
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2.1. INTRODUCTION

In this chapter a forecast system for daily municipal water
use is developed. The forecast system is based on a time series
model of water use and is used to schedule releases from two
water supply reservoirs that serve the Washington D. C.
Metropolitan Area (WMA). The model is termed a conditional
autoregressive process and can be viewed as an autoregressive
process with randomly varying mean. The randomly varying mean
accounts for changes in water use that result from the complex
interaction over time of "structural features" of the water
supply system. These features may include the price of water,
total service area connections, plumbing code provisions, and
customer income, among many others.

The modeling approach is semi-parametric. The model can be
split into a component that is treated in a nonparametric
framework and a component that is treated parametrically. The
random mean process, which represents long-term trend in mean
water use, is treated in a nonparametric framework. Conditional
on the random mean water use, the model reduces to a Gaussian
autoregressive process with a modest number of parameters. Time
series models with randomized parameters have been used in a
variety of applications, including economic forecasting (e.qg.,
Nicholls and Quinn [1982] and Swamy [1971]) and hydrologic
modeling (Klemes [1974], Potter [1976], and Smith and Karr
[1983]).

In the WMA, trend in mean water use (see Figure 2.1) is tied
to a number of factors beyond the control of water managers
(such as sectors of growth in the local economy and the
influence of interest rates on housing development). The
determining factors of water use are not all beyond the control
of water managers. Numerous publications have appeared
assessing the possibility (and subsequent successes and
failures) of manipulating the water use values appearing in
Figure 2.1 through pricing and conservation measures (see, for
example, Howe and Linaweaver [1967], Davis and Hanke [1973], and
Carver and Boland [1980]). Carver and Boland [1980] report that
seasonal price elasticities of water use for Washington D.C. are
"not significantly different from zero". Their results contrast
with those of Howe and Linaweaver [1967] in which a seasonal
price elasticity of -1.6 is reported. Carver and Boland note
that "the elasticity of seasonal water use may have fallen in
the WMA during the interval which separates the two studies
(1963-1969). Present attitudes toward the environment and
resource conservation differ considerably from attitudes of the
early 1960’s". The complex interaction of changing attitudes,
prices, and interest rates all contribute to the random
fluctuations over time of mean water use.

Parameter estimation and forecasting procedures developed
for the random mean model are non-standard (compare, for
example, Salas-LaCruz and Yevjevich [1972] and Maidment and
Parzen [1984]). A notable feature of the parameter estimation
procedure is inclusion of a "state estimation" step (for a
similar estimation procedure, see Smith and Karr [1985]). Model
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structure dictates that the key step in producing a water use
forecast is an updating step in which a revised estimate of
current mean water use is produced (updating algorithms for
water use forecasting models are also considered in Kher and
Sorooshian [1986]).

Contents of the sections are as follows. Model development
is the topic of Section 2.2. In Section 2.3 we develop
estimators for unknown parameters of the model. State
estimation techniques necessary for implementing the forecast
system are also developed in Section 2.3. The forecast system
is applied to WMA water use in Section 2.4. A summary and
conclusions are presented in Section 2.5.

2.2. MODEL DEVELOPMENT

In this section we present a model for daily municipal water
use. We denote daily water use on day t of year i by Dj(t). A
year consists of T = 7-J days (the number of weeks in the year
is J). To facilitate modeling day-of-week features of water
use, the first day of each year is taken to be a Sunday. In
Section 2.4, for example, a model for the period May - September
is developed; the first day of a given year is taken to be the
first Sunday in May.

The random mean water use for day t of year i is assumed to
be the product of two terms: Yj, the random mean daily water use
for year i, and m(t), the "unit demand function", which does not
vary from year to year (we adopt the notational convention that
upper case symbols refer to random processes and random
variables, e.g. Yj, while lower case symbols are used for
deterministic functions and parameters, e.g. m(t)). The random
variables {Yj} are assumed to represent structural attributes of
the service area that vary slowly over time and interact in
complex fashion. These attributes may include the price of water
(and price history), total service area connections, plumbing
code provisions, and customer income, among many others. The
actual mean daily water use for year i will differ from Y; due
to the influence of random factors, such as climatological
conditions, which operate on a rapidly fluctuating time scale
relative to the factors which influence Yj. The random
variables {Yj} representing mean annual water use are not
necessarily independent or identically distributed. Indeed,
trend and correlation are likely to be important features of the
process. Distributional assumptions are not made on the random
process {Y;}.

The model is specified by

Dy (t) = m(t) ¥, + a*[D;(t-1)-m(t-1) ¥ ] + Yil/zAi(t) (2.1)

where
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E[Di(t)|Yi] m(t) Y, (2.2)

E[(Di(t)-m(t)Yi)zlYi] vy, , (2.3)

1l

a is a real-valued parameter, v is a non-negative parameter, and

E[Di(t)]

m(t) = (2.4)

T
T-1 § E[Dj (k)]

k=1

Equation (2.2) states that, conditional on Y; (that is, if we
know Yj), m(t)Y; is the mean of Dj(t); equation (2.3) states
that vY; is the conditional variance of Dj(t).

The error process {Aj(t)} is assumed to be an independent
and identically distributed (i.i.d) sequence of Gaussian random
variables, with mean 0 and variance s2. The error process is
also assumed to be independent of {Dj(t)} and {Yj} .

It follows from equations (2.1) and (2.3) that the
conditional variance parameter v must satisfy the equation

v = a2v + s2 , (2.5)
implying that, for |a| < 1,
s2

v = (2.6)
1 - a2
Furthermore, it follows from equation (2.1) and the Gaussian
assumption on {Aj(t)} that, conditional on Yj, Dj(t) has a

Gaussian distribution with mean m(t)Y; and variance
(s2/(1-a2))Yj; we will write

D
Di(t) ~ N(m(t)¥i,[s2/(1-a2)]¥;) (2.7)
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We include a lagged water use term in our model to reflect
persistence in daily water use. Persistence may result from
several causes, including limitations of the distribution system
and meteorological conditions. To the extent that there is
persistence in meteorological conditions that affect water use,
this persistence is translated to water use. We do not directly
incorporate meteorological variables in our model due to
difficulty in forecasting these variables.

The unit demand function at time t, m(t), is the ratio of
mean water use on day t to mean daily water use over the course
of the year. The unit demand function does not vary from year
to year even if long-term trend in mean water use is present.
This assumption implies that, although mean water use may
exhibit trends over time, seasonal and day-of-week structure of
water use do not.

We denote the J weekly average values of the unit demand
function by Qyreeer9ge that is,

7

q4 = Yy m(7(j-1)+t)/7 i=1,...,J. (2.8)

t=1

Structure of the unit demand function is determined by one final
assumption. We assume that day-of-week coefficients Ppre-+1Pq
exist such that '

m(t) = q;
Mean daily water use can vary by day-of-week; day-of-week
effects can not, however, vary seasonally or from year to year.

We denote the water use data set available on day t of year
n by

Py for 7(j-1)+k = t (2.9)

Hp(t) = {Di(k);i=1,...,n-1;k=1,...,T;Dn(1l),..-,Dp(t)} (2.10)

The data set Hp(t) contains n-1 consecutive years of complete
daily water use data and the first t days of data for year n.
For a random variable X, we use the notation E[X|Hph(t)] as
shorthand for the conditional expectation of X given
{Dj(k);i=1l,...,n-1,k=1,...,T;Dn(1),...,Dp(t)}.

The model is described in the Introduction as a conditional
autoregressive process (more specifically, an autoregressive
process with random mean). It follows from equation (2.1) that

E[D, (t+1)[H_ (t),¥ ] = E[D_(t+1)|D (t),¥_] (2.11)

m(t+l) Y + a-[D (t) - m(t)-Y 1 ,
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so that, conditional on Y,, the process {Dp} has autoregressive
structure. The model is not, however, an autoregressive
process. It is not even a Markov Process; note that

E[Dn(t+1)|Hn(t)] = E[D (t+1)|D_(t)] . (2.12)

Intuitively, the left side of equation (2.12) differs from the
right because the data set Hp(t) contains information about the
random (and unknown) mean Y, as well as the correlation
information contained in the previous day’s observation, Dp(t).
This point is further illustrated in deriving the forecast
equations below.

The forecast that we will use on day t+l for water use on
day t+k is the conditional expectation of water use on day t+k
given observations up to and including day t, E[Dp(t+k)|Hp(t)].
The conditional expectation is obviously a function of the data
in Hp(t). It is, perhaps most notably, that function of the
data which minimizes the expected squared error with Dp(t+k).
The following result tells us how to construct our forecasts.

E[Dn(t+k)|Hp(t)] = akDp(t) + [m(t+k)-akm(t)]IE[Yn|Hn(t)] (2.13)
The result can be proven as follows.
For k=1,
E[Dp(t+1)|Hp(t)] = m(t+1)E[Yy|Hp(t)] (2.14)
+ a{Dp(t)-m(t)E[Yn|Hn(t)]}
+ E[Ya1/2nq(£+1) |Hp(t)]
= m(t+1)E[Yp|Hp(t)]
+ a{Dp(t) - m(t)E[Yp|Hp(t)]}
+ E[Yn1/2|Hpy (£)JE[Ap(£+1) |Hp(E)]
= m(t+1)E[Yn|Hp(t)]
+ aDp(t) - am(t)E[Yp|Hp(t)]
= aDp(t)

+ [m(t+l)-am(t)]E(Yp|Hp(t)].

Assume the result is true for k-1.
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E[Dn(t+k)|Hp(t)] = m(t+k)E[Yy|Hp(t)] (2.15)
+ a{E{Dn(t+k-1)|Hp(t)]-m(t+k-1)E[Yn|Hp(t)]}
+ E[Yl/ 22, (t+k) [Hp(t)]
= m(t+k)E[ Yy [Hp(t)]
+ a{ak=lpp(t) + m(t+k-1)E[Yp|Hp(t)]
- ak-Im(t)E[Yn|Hp(t)] - m(t+k-1)E[Yn|Hp(t)]}

= akpp(t) + [m(t+k)-akm(t)]E[Ya|Hp(t)]

The result follows by induction.
Note that

E[Dn(t+k) [Ha(t)] = m(t+k)E[Ypn|Hp(t)] (2.16)

for "large" k. Equation (2.13), and especially equation (2.16),
emphasize our interest in accurately modeling mean water use
(see also Section 2.4). It follows from equation (2.13) that
for short forecast lead times (roughly, 1-3 days), the estimate
of mean water use (m(t+k)E[Yn|Hp(t)]) is an important component.
It follows from equation (2.16) that for longer lead times the
forecast is virtually identical to the estimate of mean water
use.

To conclude this section we note that in some situations it
may be desirable to allow the parameters a, v, and s to depend
on time (as the unit demand function m(t) does). In this case
equation (2.6), which relates the parameters a, v, and s, is
changed to the recursive equation

v(t) = a(t)?v(t-1) + s(t)>. ‘ (2.17)

The forecast equation (2.13) becomes
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k
E[Dp(t+k) [Hn(t)] = [y a(t+j)]Dn(t)
j=1 (2.18)
k
+ [m(t+k) - (y a(t+J))m(t)]-E[Yy|Hp(t)]

j=1

Extensions of the parameter and state estimation procedures
developed in the following sections to the extended model are
also straightforward, but are not pursued.

It is also conceptually straightforward to extend the model
to a "conditional ARMA" or "conditional ARMAX" form. The
forecast equation (2.13) , however, is not generalized in a
straightforward fashion. Computational tractability is a major
reason for restricting consideration to the conditional
autoregressive model of equation (2.1).

2.3. PARAMETER AND STATE ESTIMATION

To implement a forecast system based on equation (2.13) we
need to estimate the unknown parameters m(t), a, and s and
estimate the unknown random mean water use Y,. The second
problem is one of "state estimation", that is, the optimal
prediction of an unobserved random variable. Nearly always the
optimal predictor is (as in equation (2.13)) the conditional
expection of the unobservable random variable given the
observations.

Because the random mean process is treated in a
nonparametric framework, it is especially difficult to separate
the problems of parameter and state estimation. Our approach to
parameter estimation is to replace the random mean water use Y,
for each year i, by the state estimator

Y, = 170 S D, (k) (2.19)

and proceed as though no error were involved. In other words,
to estimate the parameters m(t), a, and s, we replace the random
variables Y;,...,Y¥p-1 by the sample means Y;,...,Y¥np-1 and treat
the random mean as known. We begin with the unit demand
function m(t).
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From equation (2.9) it is clear that we need to estimate the
weekly coefficients q3,...,97 and day-of-week coefficients
P1,-..,p7. Based on equations (2.4), (2.8), and (2.19) we
choose our estimator of the weekly demand coefficients to be

n-1 7

I (77§ D (7(3-1)+K) /Y, ) (2.20)

i=1 k=1 i=1,...,J

The estimator qg is the average value of "scaled" daily demand

for week j, with daily values scaled by the average daily demand
for the year.

Our estimators of the day-of-week coefficients are given by

n-1 J

P, = (n-1)70 § (371§ Dy (7(3-1)+k)/(d4¥y)] (2.21)

i=1 j=1 k=1,.00.,7

The estimator of the Monday day-of-week coefficient, for
example, is the average of all Monday values; each value must be
scaled by the product of the estimated weekly coefficient qyr and
yearly sample mean Yj. It is straightforward at this point to
construct our estimator for the unit demand function. From
equation (2.9) we have

m(t) = q By ; 7(3-1) +k = t ; (2.22)

Centered water use values, Dj(t), are given by

Di(t) = Di(t) - m(t)¥; (2.23)

Our estimator for the autoregressive parameter a is given by
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A B e (2.24)

y § Di(t)?

i=1 t=2

A

The estimator a is a standard least-squares estimator except

that m(t)Y; is a state estimator for the unknown random mean.
The estimator for the standard error coefficient s is given

by

_ ~ 2

A

n-1 T Bi(t) - a-D, (t-1)
s2 = (n-1)~"1y§y (T-1)-1§ |- (2.25)

i=1 t=2 Y;

We now turn our attention to the state estimation problem of
computing E[Ypn|Hp(t)]. Because {Yj} is treated in a
nonparametric framework, we will not be able to explicitly
compute the conditional expectation of Y, given Hp(t). As is
often the case in state estimation problems (see, for example,
Karr [1986]) we will retreat to estimators that are linear
combinations of our forecast data (or nearly so). The estimator
of E[Yn|Hn(t)] will be denoted by Mp(t).

In constructing the estimator M,(t), we wish to exploit
structure of the data set Hp(t), which divides naturally into
two components: data from previous years Hp_3(T) and

observations from the current year Dn(l),...,Dp(t). To forecast
mean water use it is natural to condense information from
previous years to the sample means Yj;,...,Y¥p.1. Similarly,

observations for the current year are condensed to the "partial
sample means"
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Y (t) = mmmmmmmmmeeee (2.26)

Nonparametric trend techniques developed by Hirsch et al.
[1979] are used to forecast Y, from previous yearg’ sample
means, Yj,...,¥p-1. The forecast is of the form, ¥j_j +, bp where
by is the Kendall slope estimator obtained from Y;,...,Y¥p_7.

Using equations (2.1) and (2.26), it is straightforward to
show that

t

Yn(t) = Yu + a(t)[ § m(k)]"1(Dy(0) - m(0)¥p)

k=1

t t k
+ vul/20 Y m(k))1-ly oy ak-dan(g) (2.27)

k=1 k=1 j=1

where
t
a(t) = 7 ak

k=1 (2.28)

(1-at*l)y(1-a)-1 -1
It follows from equation (2.27) that, conditional on Y,

2 D
Yn(t) © N(Yn,c(t)¥pn) (2.29)

where c(t) is a function of the parameters a, m(t), and s,
which, most notably, is decreasing in t. It follows from
equation (2.29) that for each t, ¥,(t) is an unbiased state
estimator of Y, and that for t greater than s, ?n(t) is a better
estimator than Yn(s).
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Based on the preceding discussion we take our state
estimator to be

Mp(t) = w(t)Y¥p(t) + (l-w(t))(Y,_; + b)) (2.30)
where

w(t) = 1 - [(T-l—t)/T]2 (2.31)

The weight function is chosen to have the following
properties

0\ w(t) \ 1 t=1,...,T+1 (2.32)

w(l) =0 (2.33)

w(T+1l) = 1 (2.34)

w(T/2 + 1) > .50 (2.35)

On the first day of year n we have only observations from
preceding years, so all of the weight must be on preceding
years, that is, w(1l) must equal 0. At the other extreme we have
all of the data from year n available. The assumption that
w(T+1) equals 1 implies that year-to-year dependence in the
random mean process is weak. Specifically the assumption
implies that for estimating Y, from Hj(T), previous years’ data
provide no further information once Y, is available. Equation
(2.35) implies that much of the information about Y is
available at the mid-point of the year. Intuitively, relatively
less "new" information about Y, should be expected as the year
progresses. The second half of the year, for example, contains
less new information than the first (provided, of course, that
the first half is observed).

2.4. APPLICATION OF THE WATER USE MODEL
The water use forecast system is used to schedule releases

from two water supply reservoirs located in the Potomac River
basin upstream of Washington D.C. (see Chapter 5 for a detailed
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discussion of water supply management in the Potomac River
basin). A large reservoir, located far from the WMA, can
provide water to the WMA with a travel time of approximately 5
days. Releases from a small local reservoir reach water utility
intakes within the day of release. The water use model is
developed for the "summer season" (May - September), during
which forecast information is needed for scheduling water supply
releases.

For the WMA water supply system the large upstream reservoir
is operated to meet "average" water demand; the local reservoir
meets shortfalls arising from "extreme" demands. Average demand
is clearly,a moving target. The estimated Kendall slope
estimator b, obtained from 1974-1986 WMA water use data is 8
mgd/year (mgd = million gallons per day; 1 mgd = 5680 cubic
meters per day). The estimated weekly coefficients (see Figure
2.2) obtained from equation (2.21) range from a minimum of .92
at the beginning of May to a maximum of 1.06 in mid-July, from
which they decrease below 1 by the end of September. For an
annual mean water use of 500 mgd (the 1986 value for the WMA),
the seasonal variation in mean water use is 70 mgd (from 460 mgd
in early May to 530 wgd in mid-July). The estimated day-of-week
coefficients pj,...,p7 (equation (2.22)) range from a maximum of
1.02 on Wednesday to a minimum of .97 on Sunday. Differences in
day-of-week water use result in part from the fact that there is
a larger population in the service area during the week than on
weekends (a significant number of people work in the region
served by WMA water utilities but live outside of the area
served by WMA water utilities). For a weekly mean water use of
500 mgd, the range in mean water use associated with day of week
is 25 mgd. For scheduling an upstream release on day t, average
water use (for day t+5) is estimated by

A ~ ~ ~ A 'Y

M(t) = m(t+5)[w(t)Y (t) + (1-w(t))(¥ _, + b )] (2.36)

To operate the small local reservoir, forecasts of
l-day-ahead water use are required. To apply the forecast
equation (2.13) we need only specify the autoregressive
parameter a. The estimate obtained from equation (2.25) is .76.
The forecast obtained from equation (2.13) for one-day-ahead
water use is

~

D(t+l) = a-D_(t) + [m(t+1)-am(t)][w(t)¥_ (t)+(1-w(t)) (¥ _ +b )]

(2.37)

Figure 2.3 shows errors of l-day-ahead forecasts for WMA water
use during the summer of 1986. Note that the errors are weakly
correlated and that variability of the estimators decreases as
the year proceeds. The per cent bias for 1986 l-day-ahead
forecasts is -.1%; the standard error is 29 mgd.
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2.5. SUMMARY AND CONCLUSIONS

A time series model of daily municipal water use is
developed. Emphasis in model development is placed on long-term
trend, seasonality, and day-of-week effects. The model, which
is termed a conditional autoregressive process, can be
interpreted as an autoregressive process with randomly varying
mean. The random mean process, which represents long-term trend
in mean water use, is treated in a nonparametric framework.
Conditional on the random mean water use, the model reduces to a
Gaussian autoregressive process with a modest number of
parameters.

Seasonality and day-of-week effects are captured in the
model through the unit demand function. The unit demand
function at time t, m(t), is the ratio of mean daily water use
on day t of the year to mean daily water use over the course of
the year. An important model assumption is that the unit demand
function does not vary from year to year, even if long-term
trend in mean water use is present.

An attractive feature of the water use model is
computational tractability. The forecast equation derive in
Section 2.2 (equation (2.13)) can be easily implemented provided
that two estimation problems are solved. To implement the
forecast equation, parameter estimators for the model parameters
m(t) and a are needed. Also, state estimators for the random
(and unknown) mean Y, are required. A notable feature of the
parameter estimation procedure developed in Section 2.3 is
inclusion of a state estimation step. Parameter estimates for
m(t) and a are obtained after first applying a "detrending"
procedure which is based on simple state estimators for the
random mean process. The state estimator that is developed for
use in the forecast equation is nonparametric and exploits
special structure of the water use data set.

Parameter and state estimation procedures are applied to
summer season water use in the Washington D.C. Metropolitain
Area (WMA). The estimation results confirm that long-term
trend, seasonality, and day-of-week effects are prominent
features of WMA water use. The water use forecast system
developed for the WMA is used to schedule releases from two
water supply reservoirs. A large upstream reservoir is operated
to meet "average" water demands. For operation of this
reservoir, the state estimator of "current mean water use”
(equation 2.36) provides the necessary forecast information.
One-day-ahead forecasts, obtained from equation (2.13), are used
to operate a small local reservoir, which covers shortfalls due
to "extreme" water demands.

A potentially useful extension to the forecast system
involves incorporation of precipitation data (see Chapter 1).
This could be accomplished by expanding the model equation (1)
to explicitly include precipitation variables. An alternative
is to incorporate precipitation variables into the random mean
process {Yn}. With the second approach, precipitation forecasts
are not required for implementing a forecast system. Instead,
observed precipitation data are used, along with observed water
use data, to update the estimate of current mean water use.
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DEMAND FACTOR

FIGURE 2.2
WEEKLY DEMAND FACTORS
(May - September)
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CHAPTER 3

NONPARAMETRIC TECHNIQUES FOR

WATER SUPPLY FORECASTING
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3.1. INTRODUCTION

The water supply forecasting problem considered in this
chapter can be described as follows. On day t of the year we
want to produce a forecast of a random variable Y(t), which is
solely a function of future streamflow. It is assumed that the
information available for constructing a forecast is historical
daily streamflow data for the preceding n-1 years. From this
data a sample Yj(t),...,¥p-1(t), with the same distribution as
Y(t), can be obtained. The forecast we propose for Y(t) is
simply a weighted average of Yj(t),...,¥p-1(t). The weight for
year i depends on how similar hydrologic conditions on day t of
year i are to hydrologic conditions on day t of the current
year. Nonparametric regression (see Yakowitz [1985]) is the
tool used to determine the weights.

The forecast model is applied to management of the
Washington D. C. Metropolitan Area (WMA) water supply system.
Mean daily water use for the WMA is approximately 450 mgd

(maximum historical daily water use is 660 mgd). Figure 3.1
shows the sample distribution of minimum daily flow for the
Potomac River at Washington D.C. "Normal" years clearly do not

pose a threat of water supply shortage (the median value of
minimum daily flow is 1000 mgd). As is often the case for water
supply applications interest focuses on extreme drought
conditions. The forecast system developed in this paper is
designed to produce distributional forecasts for the "lower
tail" of water supply variables (the distributional approach to
long-range water supply forecasting is also adopted by Hirsch
[1981] and Day [1985]).

During the period 1930-1980 annual minimum flow of the
Potomac River was less than 700 mgd 10 times. The sample
estimate of the probability of falling below 700 mgd in any
given year is 10/51 (.20). Figure 3.2 shows a plot of minimum
June flow versus minimum summer flow (August to October). If
minimum flow during June is known, it should be possible to
sharpen the estimate of minimum flow falling below 700 mgd.
Nonparametric regression provides a flexible tool for
incorporating information contained in the preceding record of
streamflow into long-range water supply forecasts.

Contents of the sections are as follows. Section 3.2
contains a detailed problem formulation and description of the
tools that are developed for implementing the forecast system.
Application of the forecast system to WMA water supply
management problems is the topic of Section 3.3. Section 3.4
contains a summary and conclusions.

3.2. DEVELOPMENT OF THE FORECAST SYSTEM
Streamflow on day t of year i is denoted by Xj(t). A year
consists of T=365 days and begins on January 1. The random

process {Xj(t);t=1,...T;i=1,2,...} can be partitioned on day t
of year n into two sets, the "historical data set”
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Ho(t) = {X;(s);i=1,...,n-1;s=1,...,T;X (1),...,X_(t-1)} (3.1)

and "future streamflow"

G (t) = {X;(s);i>n;s=l,...,T;X (t),...,X (T)} (3.2)

The sequence of forecast random variables will be denoted

{Yj(t);t=1,...,T;i=1,2,...}. For each n and t, Yn(t) is a
function of future streamflow, that is, Yn(t) is a function of
the random variables in Gp(t). The forecast problem can be

posed as follows. We wish to compute the conditional
expectation of Y, (t) given the data available at the beginning
of day t, E[(Yn(t)|Hp(t)). The following example illustrates the
form that the forecast problem may take.

EXAMPLE 1.

Let ({Xj(t)} denote daily streamflow of the Potomac River at
Washington, D.C. We take

Y (t) = 1(min{X (s): t < s < T} <y) tsT (3.3)

that is, ¥Yu(t) equals 1 if Potomac streamflow drops below y
before the end of the year. The forecast E[Y,(t)|Hp(t)] is the
conditional probability that Potomac flow will drop below vy,
that is,

E(Y (t)|H (t)] = P{min(X_(t),...,X (T))<y|H_(t)} (3.4)

The estimator that will be used for the forecast random
variable Y,(t) is a weighted average of the preceding n-1 annual
observations Yj(t),...,¥p-1(t). The weight for year i should
reflect how similar basin conditions on day t of year i are to
conditions on day t of year n. Heuristically, the weight should
be large if streamflow values preceding day t of year i are very
similar to the corresponding streamflow values for year n and
small if streamflow values are very different.

To develop a useful model, the streamflow information in the
data set Hp(t) must be condensed. The approach we take is to
condense streamflow information for each year i into a covariate
random variable Z;(t). The covariate random variable may be
yesterday’s flow, minimum flow for the preceding d days,
cumulative flow for the preceding d days, etc. We will attempt
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to select the covariate random variable so that little
information is lost by condensing Hp(t) to Zp(t), that is

E[Y, (t)|H_(£)] = E[Y_(t) |2 (t)] (3.5)

The weight for year i should be large if the covariate value
for year i, Zj(t), is close to the covariate value for the
forecast year, Zp(t). For real-valued z and positive b, let
K(z|b) be the Gaussian kernel

1/

K(z|b) = (2x)" 2exp{-l/2(z/b)2} (3.6)

The weight function is defined by

n-1

Wi(z) = K(Z;(t)-z|b(t))/ § K(Z5(t)-z|b(t)) (3.7)

j=1

where, for each t, b(t) is a positive parameter termed the
"bandwidth" (also "window width" or "smoothing factor"). We
will interpret Wj(z) as the weight for year i (and day t) given
that the covariate value for the forecast year is z (that is,
Zj(t) equals z). It is clear from equations (3.6) and (3.7)
that if z is close to the covariate value for year i, the weight
will be large; if z is very far from Zj(t) the weight for year i
will be very small. Note also that the weights sum to 1.

The nonparametric kernel estimator of Yn(t), given that
Zn(t) equals z is

n-1
Y (tlz) = 3 W, (2)Y;(t) (3.8)

i=1

The Gaussian kernel in equation (3.6) could be replaced in
equation (3.7) by any symmetric density. As noted by Sheather
[1986] performance of kernel estimators is not overly sensitive
to the particular kernel that is chosen. Performance of kernel
estimators is, however, sensitive to the bandwidth parameter.

The criterion we use for selecting the bandwidth parameter
is integrated mean square error (IMSE), which is defined by
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I. = [ E[§n(t|z) - E[Yn(t)lzn(t)=z]]2dz (3.9)
R

Unfortunately it is difficult to explicitly compute the IMSE.
Following Haerdle [1986] we estimate the IMSE by

n-1

_ -1 - 2
Iy = (n=1)77 1 [¥4(e]24(8)) - ¥y(8)] (3.10)
j=1

where Yj(tlz-(t)) is the, "leave-one-out" estimator of Y;(t)
given Zj(t) ?to compute Y+ (t|Zi(t)) we "leave out" data from
year j in computing (3.8);. Haerdle shows that minimization of
(3.10) is asymptotically equivalent to minimization of (3.9) (as
the number of years n goes to infinity). ,We will denote the
bandwidth value that minimizes (3.10) by b(t).

Note that the weights in equation (3.7) can be made
arbitrarily close to the inverse sample size, (n-1)-l, by making
the weight b(t) large. If the covariate random variable
contains little information about the forecast random variable
one would expect the weight B(t) to be "large". Conversely, the
weights should be small if the covariate random variable can
accurately specify the forecast random variable.

If Y,o(t) is binary-valued, taking either the value 0 or 1,
the following representation for forecast variance can be
obtained:

(3.11)

s(t)?

BL(Y,(t|z) - ¥_(t))%]H_(t)]

Y (tl2)2 - 2Y (t]|2)E(Y, (t)|H_(t)] + E[Y_(t)|H_(t)]

The proof is given in the Appendix.
From equation (3.11) we obtain an estimate of the forecast
variance by replacing E[Yn(t)|Hp(t)] by Yu(t]|z),

5(£)% = ¥_(tlz)(1 - ¥_(t]2)) (3.12)

~

The estimated forecast variance of equation (3.12) is solely a
function of Y,(t|z). It is symmetric about .5, increasing from
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0 in the case that Qn(t]z) equals 0 to a value of .25 in the
case that Yp(t]|z) equals .5. Yakowitz and Szidarovszky [1985]
develop data-based estimators of forecast variance that can be
used if Yn(t) is not binary-valued.

The main restriction on the structure of the forecast random
variables is that for each t in {1,...,T} the random variables
Yi(t),Ys(t),... are identically distributed. In Example 1, the
forecast random variable can be represented as

Y (t) = g (X (£),-- X (T)) (3.13)

where g+ is a function of T-t+l arguments. The identically
distributed assumption requires both that 1) the function g of
future streamflow does not depend on the year index n and 2) the
random vectors (Xi(1),...,X2(T)), X2(1),...,X2(T)),... are
identically distributed. No further distributional assumptions
are made on streamflow.

3.3- APPLICATION OF THE FORECAST MODEL

In this section application of the forecast model to WMA
water supply management is illustrated. The Potomac River is
the principal water supply source for the WMA. Historical
minimum flow of the Potomac River at Washington D.C. (400 mgd)
is less than current mean daily water use (450 mgd) and
substantially less than maximum daily water use (660 mgd). To
determine potential augmentation requirements for WMA water
supply, long-term forecasts of minimum flow of the Potomac River
are desired. A useful estimate of the likelihood of water
supply releases is the probability that natural flow of the
Potomac River falls below 700 mgd during the course of the
summer.

To implement the forecast model of Section 3.2 the covariate
random variables {Z;(t)} must be specified and bandwidth
parameters b(t) must be estimated. The covariate random
variable 2, (t) should contain information about baseflow
potential éuring the remainder of the year. Current baseflow is
taken to be the best indicator of future baseflow. As a
surrogate for current baseflow we take Z;(t) to be minimum flow
during the preceding 30 days,

Z,

1 (t) = min {X,(t-3);j=l,...,30} (3.14)

We will use the notation zy,(t) for the pth quantile of the
covariate random variable gi(t), that is

P(Z;(t) < zp(t)} =P (3.15)
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Figure 3.3 shows the estimated bandwidth parameters for
forecasting the conditional probability that Potomac streamflow
drops below 700 mgd. Note that the parameters generally
decrease over the course of the year. As noted in the preceding
section, this behavior is consistent with a decrease in
correlation between the forecast random variable and the
covariate random variable with time separation.

The sample probability of minimum summer flow of the Potomac
dropping below 700 mgd is .20. Figure 3.4 illustrates the range
of information that can be provided by the forecast model to
sharpen the estimate. The figure plots Y,(t|zp(t)) versus t for
three quantile values; p=.1, p=.5, and p=.9. gor p=.1, the
figure shows the influence of low antecedent baseflow conditions
at time t on future baseflow. For p=.9, the figure illustrates
the influence of wet antecedent conditions. If antecedent
conditions are normal, we obtain the plot with p=.5.

Selection of the covariate random variables is a critical
part of developing and implementing the forecast system. We
examine below sensitivity of model performance to selection of
covariate random variables.

Table 3.1 shows IMSE values (from equation (3.10)) for two
variations on the minimum flow definition of the covariate
random variable in equation (3.14). The new covariate random
variables are based on minimum flow for the preceding 60 and 90
days. Figure 3.5 shows plots of Y,(t|zp(t)) versus t for 1) two
choices of covariate random variables (50 and 90 days preceding
minimum flow) and two choices of p (.1 and .9). Note that
forecast performance is not dramatically changed by increasing
the window of the covariate random variable to 90 days.

To examine sensitivity of model performance to a different
form of covariate random variable we consider cumulative flow
over the preceding J days,

J

1

Z.(t) =J ° S X, (t-3) (3.16)

i (

j=1

It could be argued that water balance variables like cumulative
flow may perform better than the baseflow surrogate under
certain conditions. Table 3.2 contains IMSE value for three
values of J, corresponding to lags of 30, 60, and 90 days. Note
that the IMSE values are larger than the IMSE values for minimum
flow during late spring and summer.

To conclude this section we examine sensitivity of the
forecast model to the discharge threshold y. It is hoped that
the estimated bandwidth parameters do not vary much if y is
slightly different from 700 mgd (in part because we would like
to apply the model to discharge thresholds "near" 700 mgd). If
the bandwidth parameters are stable in a region (yqg,y1) about y,
we can 1) assume the model to hold over the range of discharge
thresholds (yq,y1) and 2) estimate the bandwidth parameters b(t)
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by averaging the IMSE estimate of equation (3.10) over the
discharge range (yg.y1). Figure 3.6 shows the estimated
bandwidth parameters for the discharge region (600 mgd, 800
mgd). Note that the parameters are close to the parameters for
700 mgd, especially beyond early spring.

Figure 3.7 shows the sample distribution of minimum summer
flow, restricted to the range (600,800). Also shown are
nonparametric regression estimates for July corresponding to
covariate values z j(t) and z ,g(t) (the covariate random
variable is minimum flow for the preceding 30 days).

3.4. SUMMARY AND CONCLUSIONS

In this paper a forecast system is developed for producing
long-term distributional forecasts of water supply variables.
The forecast procedure requires only daily discharge data for
implementation. The forecast problem is formulated as follows.
On day t of year n we want to produce a forecast of a random
variable Y,(t), which is solely a function of future streamflow.
The forecast we propose is a weighted average of the random
sample Yj(t),...,Y¥p-1(t). The weights are determined by
nonparametric regression. The key step in implementing
nonparametric regression is specification of "bandwidth
parameters". Bandwidth parameters are chosen to minimize the
integrated mean square error (IMSE) of forecasts.

Utility of the forecast system is illustrated for water
supply management problems for the Washington Metropolitan Area.
The central problem is to anticipate whether natural flow of the
Potomac River will drop to levels requiring augmentation from
water supply reservoirs. The procedures developed in Section
3.2 provide distributional forecasts for minimum flow of the
Potomac River. .

Several topics for future research can be noted. It is
straightforward to allow multivariate covariate random
variables. The Gaussian kernel of equation (3.10) is simply
expanded to a multivariate Gaussian kernel. 1Is is also
conceptually straightforward to include "exogenous" covariate
information into our forecast model. For water supply
forecasting in the western US it would be highly desirable to
include any measurements of snowpack. Development of formalized
procedures for selection of covariate random variables,
analogous to those available in standard regression problems,
would be useful.
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APPENDIX

Proof of Equation (3.11).
BL(Y, (t]2) - ¥ (t))?|H_(£)] =
E[Y_(t|2)?|H_(t)] - 2B(Y_(t]2)¥_(t)|H_(t)]
+ E[Yn(t)2|Hn(t)]. (A.1)

Because Y (t|z) is a function of data in H (t) it follows that

E[Y_(t]z)?[H_(£)] = ¥_(t|z)%. (3.2)
Similarly,
E[Y_(t|z)Y_(t)|H_(t)] = Y_(t|z)E[Y_(t)|H_(t)]. (A.3)

The result follows by inserting (A.2) and (A.3) in (A.l1) and
noting that

E[Y, (t)2|H (t)] = E[Y_(t)|H_(t)] (A.4).
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IMSE Value
Minimimum Flow for Preceding

Month 30 days 60 days 90 days.

1 .156 .137 .152
2 .150 .151 .135
3 .154 .155 .151
4 .144 .155 .155
5 <161 .147 .155
6 .142 .136 .114
7 .094 .093 .093
8 .115 «115 .115
9 .088 .101 .101

TABLE 3.1. IMSE values by month for minimum flow covariate

random variables. Month 1 is January.
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IMSE Value
Accumulated Flow for Preceding

Month 30 days 60 days 90 days

1 .149 .150 .151
2 .160 .153 <147
3 .163 .157 .152
4 .156 .161 .155
5 <162 .158 .157
6 .166 .149 .159
7 .125 .140 .148
8 <115 .120 .137
9 .085 .090 .101

TABLE 3.2. IMSE values by month for accumulated flow covariate

random variables. Month 1 is January.
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CHAPTER 4

PARAMETRIC OPERATING RULES FOR

WATER QUALITY OPERATION
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4.1- INTRODUCTION

Juhle [1986)]) notes that "it is surprising how little
attention is given to low flow management. The Corps of
Engineers has over 650 projects,... many of which are not being
utilized to their maximum potential for low flow management.”
Juhle suggests that the traditional safe yield approach to low
flow management should be replaced by seasonally varying
strategies that push the reservoir beyond its safe yield. 1In
this chapter a family of seasonally varying operating rules,
termed "conditional yield operating rules", is introduced.
Conditional yield operating rules extend safe yield rules in a
straightforward fashion. The principal difference is that for
conditional yield rules reliability remains constant over the
course of a year, not release. An important feature of
conditional yield operating rules is that they can be viewed as
"parametric operating rules". Heuristically, a parametric
operating rule specifies reservoir release in terms of previous
inflow (and quantities that can be computed from inflow, such as
reservoir storage) and a finite number of real-valued

parameters.
Conditional yield operating rules are developed within the
framework of the "maximum yield problem". The basic goal of the

maximum yield problem is to balance the conflicting objectives
of maximizing the quantity of releases and maximizing the
reliability of releases. The maximum yield problem is
formulated for operation of water quality storage in Jennings
Randolph reservoir, located on the North Branch Potomac River in
western Maryland.

Contents of the sections are as follows. Definitions and
notation are given in Section 4.2. Also contained in Section
4.2 is an introduction to parametric operating rules. Quantile
yvield and conditional yield operating rules are the topics of
Section 4.3. Safe yield operation is a special case of a
quantile yield operating rule. The maximum yield problem is the
principal topic of Section 4.4. Application of yield techniques
to operation of Jennings Randolph is contained in Section 4.5.

A summary and conclusions are given in Section 4.6.

4.2- DEFINITIONS AND NOTATION

We consider daily operation of a single reservoir with
capacity C. A year consists of T days and begins on June 1 (the
period of water quality operation for Jennings Randolph
reservoir extends from June 1 - November 31; the number of days
T during the year is 183). Reservoir storage on day t of the
year is denoted S(t). The reservoir release rule on day t is
denoted R(t) and reservoir inflow is denoted X(t). It is
assumed throughout that S(0) = C, that is, reservoir storage is
at capacity on the first day of each year. When yearly
dependence is important, we modify the notation to include a
year index. Storage on day t of year i, for example, will be
denoted S;(t).
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Continuity is represented by the following equations:

S(t) = min{S(t-1) + X(t) - R(t) , C} ; t =2,...,T (4.1)
where
R(t) = max{S(t-1) - X(t) , R(t)} (4.2)

Note that the actual amount of water released is given by the
process {R(t)} By (4.2) if our operating policy specifies a
release larger than storage at time t-1 and reservoir inflow
during day t, the actual release is reduced from the release
rule value to the available storage plus inflow. In this case
storage is completely depleted.

We say that {R(t),t=1,...,T} is a parametric operating rule
with operating parameter, a = (aj,...,ax), and operating
function (f,t=1,..,T), provided that

R(t) = f¢(X(1),...,X(t-1),a) , t=1,...,T (4.3)

where f+ is a non- negative function of (t-1)+k arguments. The
operating function is treated as known, the operating parameters
as unknown.

Parametric operating rules are encountered most often in
implicit form rather than the explicit form of (4.3). Most
notable is the following class of operating rules. If

R(t) = ft(S(l),...,S(t-l),R(l),...,R(t-l),a) (4.4)

where fy is a positive function of 2(t-1)+k arguments, then R(t)
is a parametric operating rule with parameter a.

EXAMPLE 4.1. The linear decision rule (ReVelle et al. [1969]) is
specified by

R(t) = a;*S(t-1) + a (4.5)

2

It is a parametric operating rule for which the operating
function is a linear function of current storage; the operating
parameter is (aj,as).
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It follows from our assumptions that reservoir inflow is the
driving random process. Storage and release are random, but
only through their dependence on inflow. It is assumed that the
random vectors {X;(t),t=1l,...,T} i=1,2,... are independent and
identically distributed (i.i.d). No further distributional
assumptions will be made.

4.3~ CONDITIONAL YIELD OPERATING RULES

The topic of this section is a particular class of
parametric operating rules which will be termed conditional
vield operating rules. In Section 4.4 we illustrate utility of
these operating policies for the maximum yield problem.
Conditional yield operating rules are straightforward extensions
of safe yield operating rules. We begin this section with a
statistical development of quantile yield and safe yield
operating rules. Extension to conditional yield operating rules
will follow.

The annual yield Y is the solution to the math programming
problem

maximize y
(4.6)

such that S(0) c

S(t) = min{C,S(t-1) + X(t) - vy}
S(t) >0
fort=1,...,T.

The annual yield is the maximum quantity of water that can be
released on a constant daily basis without at any time during
the year completely depleting storage. The random variable Y is
a complicated function of {X(t),t=1l,...,T}. We denote its
distribution function by

F(y) = P{Y = y} (4.7)
The quantile function of F is defined by

Q(a) = inf {y: F(y) > a} a e [0,1) (4.8)

The value of Q(a) is the reservoir yield that can be maintained
in a given year with probability l-a. A "quantile yield"
Qeperating rule is of the form
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R(t) = Q(a) (4.9)

Note that a quantile yield rule is a parametric operating rule
for which the operating function is a constant, determined by
the operating parameter a. The operating parameter a is termed
the "operational reliability". If a is very low, reservoir
yield will be low but reliability of delivering that yield will
be high.

With the preceding framework safe yield yr can be defined as
the lower bound of the distribution F. It follows from (4.8)
that

Yp = Q(0) (4.10)

so that a safe yield policy is a special case of a quantile
yield operating rule.

Conditional yield operating policies are based on the notion
that yield of a reservoir may vary substantially over the course
of a year. If, for example, a large storm fills the reservoir
in mid-summer, yield of the reservoir has increased from what it
was just before the storm. Similarly, yield reliability for a
given storage s, should be strongly dependent on whether we are
early or late in the annual operating cycle.

The "conditional yield" on day t of the year, Y(t), is the
maximum quantity of water that can be released from day t onward
on a constant daily basis until the end of the year without at
any time depleting storage. Given that S(t) equals s, the
conditional yield Y(t) is the solution to the math programming
problem

maximize y
(4.11)

such that S(t) s

S(u) = min{C,S(u-1) + X(u) -~ y}
S(u) > 0
for u = t+1,...,T.

Clearly the conditional yield on day t is strongly dependent on
the storage S(t).
The conditional distribution of yield at t is given by

F (y|s) = P{¥(t) sy | S(t) = s} (4.12)
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Similarly the conditional quantile function at t is

Qt(als) = Ft'l(als) ae (0,1) (4.13)

A conditional yield operating rule is specified by
R(t) = Q.(alS(t)) (4.14)

where a, the conditional system reliability, is the one unknown
parameter.

A problem that arises in implementing either a quantile
yield or conditional yield operating policy is that the
distributions F and F{ are not known a priori and must be
estimated from streamflow data. Given n years of historical

streamflow data {Xj(t),t=1,...,T;i=1l,...,n} we obtain a random
sample Y3,...,¥q from F (or Yj(t),...,¥n(t) if we are
estimating F¢). The order statistics of Y. . . v  are denoted

Y(1)<...<¥(n). The quantile estimator we tise is Obtained by
inverting thé linearized sample distribution function, F.
The estimated quantile function is

Q(a) = F l(a) 1/(n+l) < a < n/(n+1) (4.15)

The procedure described above does not provide an estimator
of the safe yield yp. Smith and Weissman [1985] and Loaiciga
and Marino [1987] describe procedures for estimating the "lower
tail" of a distribution that can be used to estimate the the
safe yield.

4.4- MAXIMUM YIELD RESERVOIR MANAGEMENT

Maximum yield reservoir management has two conflicting
objectives: 1) maximizing the quantity of releases and 2)
maximizing the reliability of releases. A natural measure of
performance for the first objective is the total release during
the course of the year

U="T"75 R(t) (4.16)

given here as average daily release. In practice, the most
common way of measuring reliability is in terms of the minimum
release
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V = min{R(t),t=1,...,T} (4.17)

If a minimum release rp and reliability p can be specified, the
two objectives can be combined to form the maximum yield problem

maximize E[U]
R € R

(4.18)
such that P{V < rm} <p

where R* is the class of operating rules we optimize over. Note
that we do not guarantee a minimum release of rp. We only
guarantee that a minimum release of rp can be maintained in a
given year with probability 1-p.

In specifying R¥, ryn, and p, we determine the flexibility
that is allowed in reservoir management. At one extreme we
obtain the following maximum yield problem

maximize E[U(a)]
ae (0,1)

(4.19)
such that R(t) = Q(a)

P(V(a) < rm} < p.

In this case R* is the family of quantile yield operating rules.

The minimum flow V(a) will differ from the average daily flow

U(a) only if storage is depleted at some time during the year.
The optimal operating rule for (4.19) satisfies

R(t) 2 Q(p) (4.20)

if Q(p) is greater than or equal to rp. If Q(p) is less than
m: (4.19) has no feasible solution. To obtain (4.20) note that
if a; > ap,

E[U(a;)] > E[U(a,)] (4.21)

that is, the larger the constant release rule, the larger the
expected cumulative release (strict inequality in (4.21)
requires a minimal assumption on the streamflow process, such as
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existence of continuous density for Xj(t)). If Q(p) is greater
than or equal to rp

P{V(p)<x_} < P{V(p)<Q(P)} = P (4.22)

It follows from (4.21) that R(t) is at least as large as Q(p).
In practice R(t) will likely be very close to Q(p), because in
years for which storage is depleted, actual release is reduced
to inflow. The minimum release rp will typically be much larger
than reservoir inflow during extreme reservoir drawdown periods.

If we take the class of operating rules R* to be the
conditional yield operating rules we obtain the following
formulation of the maximum yield problem.

maximize E[U(a)]
ae (0,1)

(4.23)
such that R(t) = Qt(aIS(t))

P{V(a) < rm} < p.

In this formulation R* is the family of conditional yield
operating rules.

Because we treat inflow in a nonparametric framework we have
little hope of analytically evaluating E[U(a)] and P{V(a)<rp}.
We can, however, estimate them. If we have n years of

historical inflow data {Xj(t);t=1l,...T;i=l,...,n} our estimators
are
n
G (a) =n"ty U, (a) (4.24)
n it :
i=1
and
n
- -1
Hn(a) =n ) 1(Vi(a) < rm) (4.25)
i=1

Note that the inflow data set is serving two functions. To
compute U; and V; we use streamflow data from year i as the
inflow sequence needed for evaluating (4.16) and (4.17). We
also use streamflow data from the n-1 remaining years to
estimate the conditional quantile functions (as described at the
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end of Section 4.3) necessary for implementing the conditional
yield rules.

A g B .
We now choose a as any solution to the optimization problem

maximize G,(a)

ae€ [0,1) (4.26)
such that ﬁn(a) = p

g A .
We will use a as our operating parameter. To solve the
optimization problem (4.26) a numerical search procedure is
used.

4.5- EXAMPLE

Jennings Randolph is a multipurpose reservoir located on the
North Branch Potomac River. Drainage area of the North Branch
above the dam is 240 square miles. The reservoir has a total
capacity of 30 billion gallons of which 16.6 billion gallons are
authorized for water quality. The principal goals of water
quality operation are maintenance of aquatic habitat in the
river below the dam and dilution of effluents from downstream
industrial dischargers. For both purposes it is desirable to
release as much water as possible.

The Corps of Engineers has determined that a successful flow
augmentation season is one in which minimum release is
maintained above 100 mgd. Juhle [1986] notes that 8 or 9 good
years (out of 10) are much preferable to 10 mediocre years.

Maximum yield problems are formulated below for operation of
water quality storge in Jennings Randolph. The minimum release
rm is taken to be 100 mgd and the probability level p is taken
to be .1.

Figure 4.1 shows the annual yield distribution for Jennings
Randolph water quality storage. It follows from (4.20) that the
optimal policy for the maximum yield problem of (4.19) is
approximately, R(t) = 160 mgd. Using the estimator (4.24) the
optimal mean yield is 145 mgd.

The optimal conditional yield rule was also determined using
r equal to 100 mgd and p equal to .10. The optimal parameter
obtained from (4.26) is .40. Figure 4.2 shows the seguence of
relases using a conditional yield rule during a dry year (1966).

The optimal mean yield obtained from (4.24) is 210 mgd. It
follows that the gquantity of water released from the reservoir
is 60% larger using conditional yield rules rather than a
constant quantile yield rule. The reliability is the same for
both rules.
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4.6- SUMMARY AND CONCLUSIONS

The statistical approach we propose for developing reservoir
operating rules contrasts sharply with stochastic dynamic
programming. In stochastic dynamic programming structure of
operating rules is general and strict parametric assumptions are
made on the random component of the process, reservoir inflow
(see Yakowitz [1982]). We take the opposite approach. We
severely restrict the structure of operating rules and treat the
random component, reservoir inflow, in a nonparametric
framework.

The procedure we recommend for developing reservoir
operating rules conforms closely to traditional engineering
practice. Specification of the form of operating rules is
carried out prior to the optimization step and is generally
based on the experience of system operators. Operating rules
have several unknown parameters, which are determined by
simulation (using historical data) to optimize a specified
measure of system performance. The optimization step is present
in our approach but in a diminished role, as compared with
stochastic dynamic programming. Our approach is motivated in
part by Rogers and Fiering’s [1986] suggestion that "the use of
optimizing models be softened in favor of systematic analysis".

Uitlity of parametric operating rules extends beyond the
water quality problem discussed in this section. Parametric
operating rules are used for operation of water supply
reservoirs in the Potomac River basin (see Chapter 5).
Parametric operating rules have also been developed for flood
control problems (Smith and Karr [1986] and Chapter 6).
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CHAPTER 5

PARAMETRIC OPERATING RULES FOR

WATER SUPPLY OPERATION
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5.1. INTRODUCTION

The Washington Metropolitan Area (WMA), consisting of the
District of Columbia, the Maryland suburbs of D.C., and the
Virgina suburbs of D.C., has experienced rapid growth in the
1980’s. Associated with population growth is a sharp increase
in water use (see Figure 2.1). In this chapter yield analysis
techniques are developed to assess adequacy of the current WMA
water supply system to meet escelating future demands.

Three major water utilities (one for each of the principal
geographic subregions) provide drinking water for the WMA.
Water supplies for the three utilities are operated jointly to
minimize the risk of water supply shortage (see Sheer and Flynn
(1985]). The direct link among the three water utilities is
reliance on the Potomac River. Natural flow of the Potomac
River can be augmented by water supply releases from two
upstream reservoirs, Jennings Randolph reservoir, located on the
North Branch Potomac River in western Maryland, and Little
Seneca reservoir, located on Little Seneca Creek in the
northwest corner of the WMA.

The yield analysis techniges developed in this chapter are
used to examine the "operational" yield of an existing water
supply system rather than the potential yield of a water supply
system under design. Three features of the yield analysis
techniques are key to our use of the term operational: 1) the
modeling time step is daily, 2) actual reservoir operating rules
are incorporated, and 3) variability in daily water use is
accomodated.

Techniques developed in this chapter borrow from several
sources. The work of Palmer et al. [1982], in which a
statistical treatment of water supply yield is developed, is a
direct antecedent of this paper (see also Vogel and Stedinger
[1987]). The search for increased water supply yield from joint
reservoir operation is motivated by synergystic gain concepts
introduced by Hirsch et al. [1977]. The emphasis on water use
variability in the yield model of Section 5.4 builds upon
developments in short-term water use modeling (see, for example,
Maidment and Parzen [1985a] and [1985b] and Smith [1987]).

Contents of the sections are as follows. Section 5.2
contains definitions, notation, and development of the
statistical model used for yield analysis. Yield analysis
models for the WMA are developed in Section 5.3. In Section 5.4
the yield analysis techniques are extended to account for
variability in water use. A summary and conclusions are
presented in Section 5.5.

5.2. DEFINITIONS AND NOTATION

Storage in Jennings Randolph reservoir on day t of year i is
denoted by S1j(t); the capacity of water supply storage for
Jennings Randolph is denoted C; and equals 13.4 billion gallons.
Storage in Little Seneca reservoir is denoted S2j(t); the
capacity of Little Seneca is denoted Cy and equals 4.0 billion
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gallons. The release rules are denoted R1lj(t) and R2j(t),
reservoir inflow Z1lj(t) and Z2;(t). Natural flow of the
unregulated portion of the Potomac River is Xj(t). A "water
supply year" begins on June 1 and consists of T = 365 days. It
is assumed that reservoir storage is at capacity at the
beginning of each year, that is, S1;(0) equals C; and S2;(0)
equals Cjp.

Catchments of the two reservoirs differ significantly in
their hydrologic characteristics. The drainage area of the
North Branch Potomac River above Jennings Randolph is 240 square
miles. Mean annual runoff for the mountainous North Branch is
20 inches. The drainage area of Little Seneca Creek above the
reservoir is 21 square miles. Mean annual runoff of Little
Seneca Creek is 12 inches. Jennings Randolph not only has a
much larger ratio of drainage area to capacity than Little
Seneca, it also has a much larger ratio of mean inflow to
drainage area. Hydrologic characteristics and reservoir
location play a major role in determining the form of reservoir
operating rules (see Section 5.3).

We introduce in Sections 5.3 and 5.4 two definitions of
"annual yield." The following examples illustrate the form
annual yield random variables may take in special cases.

EXAMPLE 1-
The yield of a single reservoir for year i, Yj, is the

solution to the math programming problem,

maximize y

(5.1)
such that R, (t) =Y
S;(t) = min {S;(t-1) + Z,(t) - R;(t),C}
S;(t) >0

for t =1,...,T

Because we consider only a single reservoir, dependence on the
reservoir index is suppressed in the release, storage, and
inflow notation of (5.1). The reservoir yield Y; is the largest
constant release that can be maintained in year i without at any
time completely depleting storage, given that the reservoir
begins the year with storage at capacity.

EXAMPLE 2-

The yield for an unreglated River for year i is simply the
minimum daily flow, that is,
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Y, = min {X;(t), t=1,...,T}. (5.2)

EXAMPLE 3-

The combined yield of a river and upstream reservoir can be
defined, in certain cases, as the solution to

maximize y

(5.3
such that Ri(t)= max {y - Xi(t),O} )
S (t)= min{S, (t-1)-R,(t),;+2(t),C }
Si(t) >0
for t =1,...,T.

Releases from the reservoir are made only if natural flow of the
river falls below the yield value y we wish to maintain. This
model is not appropriate for assessing yield of the WMA water
supply system. Implicit in equation (5.3) is the assumption
that reservoir releases are immediately available at the demand
point. Releases from Jennings Randolph reservoir require
approximately 5 days to reach Washington, D.C. (Trombley
[1982]). Furthermore, the WMA system consists of two
reservoirs. Extension of equation (5.3) to multiple reservoir
systems requires explicit specification of operating rules to
allocate the deficit, max{y-Xj(t),0}, among the reservoirs.

Yield random variables developed in Sections 5.3 and 5.4 are
defined implicitly by representations like equations (5.1) -
(5.3). We assume that yield random variables Y;,...,Y, are
independent and identically distributed (i.i.d.). Their common
distribution is denoted by

F(y) = P{Y; < v} (5.4)

Parametric assumptions on yield distributions are not made.
The independence assumption rests on critical periods (or
minimum annual flow) being separated from year to year by
sufficiently long non-drawdown periods (see Loaiciga and Marino
[1987] for detailed discussion; see also Matalas [1963]). For
reservoir yield samples, the identically distributed assumption
is valid and useful only if reservoirs refill annually.

For water supply yield analysis interest focuses on the
lower tail of the distribution F. A useful tool for describing
the lower tail of F is the quantile function

-115-~



Q(p) = inf {y : F(y) > p} pe (0,1). (5.5)

The quantile function evaluated at p gives the yield that can be
maintained in a given year with probability 1l-p. Of particular
importance is the "safe yield" yp, which is defined to be the
lower bound of F, that is

yp = Q(0) . (5.6)

In analyzing yield data it is useful to deal with the order
statistics Y(1)<+--:<Y¥(ny. We term the minimum value Y 1 the
"historic yiel&" (foliowing Palmer et al. [1982]). Thé )
"interior" portion of the distribution F (see Section 5.3) can
be estimated from order statistics using standard procedures
(see, for example, David [1970]). Smith and Weissman [1985] and
Loaiciga and Marino [1987] develop techniques that can be used
to estimate "exterior" characteristics of the yield
distribution, including the safe yield yp.

5.3. YIELD ANALYSIS - CONSTANT DEMAND

The traditional method for assessing yield of a water supply
system is to combine the historic yield values for each of the
system components. The historic yield values for Jennings
Randolph and Little Seneca reservoir, obtained from equation
(5.1), are 63 mgd and 13 mgd, respectively. The historic yield
for the Potomac River, obtained from equation (5.2) is 406 mgd.
Combining the historic yield values, we obtain a system yield of
482 mgd. Hirsch et al. [1977] show that if components of a
water supply system are operated jointly the system yield may be
substantially larger than the sum of the individual historic
yields. They term the increased yield due to joint operation
the synergistic gain. 1In this section a yield model is
formulated for assessing the joint yield of the Potomac River,
Jennings Randolph reservoir, and Little Seneca reservoir.

To obtain an analysis of system yield relevant to
operational conditions we must explicitly incorporate reservoir
operating rules. The basic guidelines for operation of Jennings
Randolph and Little Seneca are straightforward. Releases are
not made when demand can be met from natural flow of the Potomac
River (which is likely to be the case for the better part of any
year). When reservoir releases are needed, Jennings Randolph
provides the "average" shortfall between demand and natural flow
of the Potomac. Little Seneca fills in holes created by
"extreme" shortfalls between demand and Potomac flow (releases
from Little Seneca reservoir reach the WMA within the day of
release). These operating guidelines are based on the different
travel times of reservoir releases to the WMA and the
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contrasting hydrologic characteristics of the two catchments
(see Section 5.2).

The operating rules that are used for Jennings Randolph and
Little Seneca are of the following form. To meet a constant
demand of y for the WMA, the Jennings Randolph release rule is

Rli(t) = max {al(y - xi(t)) + a,, 0} (5.7)

where a; is a nonnegative constant and aj; is a real constant.
The release rule for Little Seneca is

R2i(t) = max {y - X,;(t), 0} (5.8)
where
gi(t) = X;(t) + Rl (t-5) (5.9)

is natural flow of the Potomac plus the routed releases from
Jennings Randolph (recall from Section 5.2 that releases from
Jennings Randolph reservoir require 5 days to reach the WMA).
By increasing either aj or aj, Jennings Randolph releases are
increased and reliance on the smaller local reservoir is
reduced.

With the preceding operating rules, the system yield for
year i is defined by

maximize y

(5.10)
such that R1,(t) = max {al(y~- X.(t)) + a2,0}
R2i(t) = max {y - Xi(t),O}
S1;(t) = min {S1,(t-1) + Z13(t) - RL;(t),Cy}
$2;(t) = min {S2;(t-1) + 22;(t) - R2;(t),C,}
s2,(t) > 0

fort=1,...,T .

Note that the system fails when Little Seneca runs out of water.

The yield distribution of random variables Yj, Y2,...
obtained from equation (5.10) is dependent on reservoir
operating rules. The dependence is simple because the operating
rules are completely specified by streamflow observations and
the two parameters aj and a;. We will denote by Qa(p) the
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quantile function of the yield distribution indexed by the
parameters a = (aj,a). In other words, Q,(p) is the quantile
function of yield random variables Y;, Y5,... obtained from
equation (5.10), given that the operating parameters are
(a1,a2).

. The parameters aj; and aj; are chosen to optimize specific
characteristics of the yield distribution. The optimization
problem can be formulated as follows: choose the parameters
(21,22) to maximize the "weighted yield"

1
I(a) = [ w(p)Q,(p)dp (5.11)
0
where
1
Jwip)dp = 1
0

The weight function w(p) determines attributes of the yield
distribution that are to be optimized. The following examples
illustrate flexibility of (5.11).

EXAMPLE 4. If the weight function is the Dirac delta function

=
el

]
o

(5.12)

H
[s)
|

- Qa(Po) (5°13)

In particular if pg equals 0, the objective is to maximize the
safe yield Q5(0).
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EXAMPLE 5. If the weight function is constant and equal to 1,
I(a) = Ea[Yi] (5.14)

The objective in this case is to maximize the expected yield.

EXAMPLE 6. If

w(p) 10 p € [0,.1]

w(p) 0 otherwise, (5.15)

then the objective is to maximize the "average yield" over the
lower 10% of the yield distribution, that is,

.1
I(a) = 10-f Q_(p)dp (5.16)
0

Because the yield distribution is treated in a nonparametric
framework, there is little hope of evaluating the weighted yield
I(a) analytically. The weighted yield can, however, be
estimated by

n
T(a) = § wi¥ g (5.17)
i=1
where
w, = (n+1)Trw(i/(n+l)) (5.18)

and Ygi) is the ith order statistic obtained from equation
(5.10
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EXAMPLE 4a. if we take

equation (5.17) provides an estimator of

1

I(a) = Q_(p,) i/m e [py-(2n)F, py+(2n) 7y,

EXAMPLE 5a. If we take

equation (5.17) provides an estimator for

I(a) = E,[Y,]

EXAMPLE 6a. If we take

w. 10/n i< 10/n

1

w, = 0 i>10/n

equation (5.17) provides an estimator for
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I(a) = 10-f Q_(p)dp (5.24)

Table 5.1 contains parameter estimates and historic yield
values for several choices of weight function. To maximize the
historic yield we can take wj; equal to 1 and all other weights
equal to 0. The optimal historic yield in this case is 718 mgd,
an increase of 236 mgd above the sum of the component historic
yields!

By placing all weight on the historic yield year, operations
are closely tied to a particular sequence of hydrologic events.
In practice, it may be desirable to take a smoother weighting of
the lower tail of the yield distribution. Note that if we take
w1 equal to .5, wp = w3 = .2, and wg = .1, we lower the historic
yield to 712 mgd, but significantly increase the remainder of
the lower tail of Qj(p).

5.4. YIELD ANALYSIS - VARIABLE DEMAND

The yield results of the preceding section are not directly
comparable to the information available concerning long-term
trend in water use (see Figure 2.1). In this section annual
yield random variables will be represented in terms of mean
daily water use so that yield and demand are directly
comparable. A simple model of daily water use (see Chapter 2)
is used to assess the effect of water use variability on water
supply yield.

Water use for day t of year i is denoted Dj(t). If mean
daily water use for year i is y, the water use model is
specified by

1/2

D.(t) = m(t)'y + a-[Di(t—l)-m(t-l)'y] + vy Ai(t) (5.25)

i

where a is a real-valued parameter and m(t) is the "unit demand
function"

M{t) = ——mmm——m——————ee (5.26)

-121-



The unit demand function at time t, m(t), is the ratio of
average water use on day t of the year to average daily water
use over the course of the year. The unit demand does not vary
from year to year even if long-term trend in mean water use is
present. This assumption implies that, although mean water use
may exhibit trends over time, seasonal and day-of-week structure
of water use do not. The error process Aj(t) is assumed to be
an i.i.d. sequence of Gaussian random variables with mean 0 and
variance sZ2.

The reservoir operating rules of equations (5.7) and (5.8)
are easily modified to account for daily variability in water
use. If mean daily water use for the year is y, the Jennings
Randolph release is

Rli(t) = max {al[m(t+5)-y - Xi(t)] +ta,, 0} (5.27)
The Little Seneca release is
R2;(t) = max {D,;(t) - X;(t), 0} (5.28)

The system yield for year i, Yj, is the solution to,

maximize y ' (5.29)
such that D, (t) = y'm(t) + a[D;(t-1)-y-m(t-1)] + yl/zAi(t)
Rl (t) = max {a,[m(t)-y-X;(t)] + a,, O}

R2; (t) = max {D,(t) - ;i(t), 0}

S1,(t) = min {S1,(t-1) + Z1,(t) - R1,(t),C;}
S2,(t) = min {S2,(t-1) + 22,(t) - R2,(t),C,}
52, (t) > 0

fort=1,...,T

In previous formulations, randomness in annual yield is
attributed solely to randomness in streamflow. In the current
formulation randomness is additionally attributed to random
fluctuations in daily water use. Because water use exhibits
marked trend over time, it is not possible to use water use
observations directly, as we do with streamflow. Instead we use
historical water use data to estimate parameters of the water
use model (see Section 2.3 of Chapter 2). A "data set" of errxor
variables {Aj(t);t=1l,...,T;i=1,...,n} for use in equation (5.29)
is then obtained by simulation.

-122-



For the case in which all weight is place on the first order
statistic, the historic yield obtained from (5.29) is 724 mgd.
Surprisingly, the historic yield increases from the previous
formulation despite the additional variability introduced in
daily water use. The explanation is to be found in Figure 5.1,
which shows the estimated unit demand function m(t). Note that
mean water use peaks in July; mean daily water use in July is
18% larger than mean daily water use for the entire year. The
trough in mean water use occurs in winter. Mean daily water use
in late winter is 10% less than mean daily water use for the
entire year. Water use peaks several months before natural flow
of the Potomac reaches its trough. During the extended
reservoir drawdown period in fall and early winter, mean water
use is at its minimum.

5.5. CONCLUSIONS

In this chapter a sequence of water supply yield models have
been developed. The models are used to assess adequacy of the
current WMA water supply system to meet escalating water
demands. The following features of the yield models are
noteworthy.

1) 1In each of the models the fundamental concept is "annual
yield". Annual yield for a given year is a nonnegative random
variable which represents the maximum yield that the water
supply system can provide in that year. Randomness in annual
vield may be attributed soley to randomness in supply (as in the
yield model of Section 5.3) or to randomness in both supply and
demand (as in the yield model of Section 5.4).

2) The statistical model that is used to analyze yield random
variables is nonparametric. It is assumed that annual yield
random variables are i.i.d. It is noted in Section 5.3 that
justification for the yield model rests in part on the fact that
reservoirs refill annually. For application to water supply
systems with multi-year reservoir drawdown (as in much of the
western U.S.), the yield models would require modification.

3) Annual yield random variables are dependent on reservoir
operating rules. For the WMA water supply system, dependence is
simple because operating rules are completely specified by
streamflow observations and two real-valued parameters (aj,ajy)-.
The form of reservoir operating rules for the WMA water supply
system is dictated by reservoir size and travel time. The large
reservoir, which is located far from the WMA, provides "average"
shortfalls between demand and natural flow of the Potomac River.
The small reservoir, located close to the WMA, covers shortfalls
arising from extreme demands. The operating parameters (aj,a2)
determine the extent to which the large reservoir is utilized
(in effect, determining the boundary between "average" and
"extreme").

4) Operating parameters (aj,aj) are chosen to optimize a
specified attribute of the yield distribution. The "weighted
yield" I(a) is introduced as the criterion for selecting the
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operating parameters. It is shown that the sample estimator
I(a) can be used to obtain solutions to the optimization
problem.

5) The yield model is extended in Section 5.4 to accommodate
variability in water use. 1In the yield model of Section 5.4,
annual yield is interpreted as the largest mean daily water use
that the system can provide without experiencing supply
shortfalls on any day. This formulation allows direct
comparison of water supply yield with trends in mean water use.
6) The historic yield values of Jennings Randolph reservoir,
Little Seneca reservoir, and the Potomac River, are,
respectively, 63 mgd, 13 mgd, and 406 mgd. Combining the yield
values of the three components of the WMA water supply system
produces a yield of 482 mgd. The historic yield values for
joint system yield models of both Sections 5.4 and 5.5 exceed
700 mgd. The synergistic gain attributed to the system
operating rules is in excess of 200 mgd. Most importantly,
synergistic gain places water supply yield well above the
current mean water use.

The yield analysis results are encouraging. For the
present, the WMA water supply system is clearly quite reliable.
If water use continues to grow at the rate of the past 5 years,
mean daily water use will equal the historic yield of the water
supply system in approximately 30 years. Additional water
supply will ultimately be needed for the WMA. The techniques
used in this chapter have relevance to future design problems.
If water supply storage is to be added to the WMA system, it
should be added to functionally augment the current water supply
system.
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FIGURE 5.1
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WEIGHTED YIELD

(wl,wz,w3,w4)

., @, (1.0,0,0,0) (.7,.3,0,0) (.6,.3,.1,0) (.5,.2.,2,.1)

.38 65. 719%* 745 772 794
1.1 0. 709 754%* . 784 811
.91 43, 707 753 ‘ 786* 817
.79 73. 699 747 783 820*

Table 5.1 Weighted yield values. Stars indicate optimal
parameters. The parameter set (.38,65), for example, is optimal
for the weights (1,0,0,0). The optimal weighted yield in this
case is 719. All weights for indices larger than 4 equal 0.
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CHAPTER 6

PARAMETRIC OPERATING RULES FOR

FLOOD CONTROL OPERATION
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6.1 INTRODUCTION

In this chapter a family of reservoir operating rules is
developed that can be used to make hourly flood control releases
in both a design context, and in real-time operation. The
regulation of a flood through reservoir operation is considered
and general characteristics of a damage reducing operating plan
are described. While the regulation of damage producing runoff
is viewed generally, each flood event varies in its runoff
volume, peak discharge, and timing. From the general family of
operating rules considered, parameters can be chosen to best
achieve flood management goals for a particular high flow event.
The parametric operating rule specifies reservoir release in
terms of previous inflow (and quantities that can be computed
from inflow, such as reservoir storage) and a finite number of
real-valued parameters.

Two observations motivate the development of a simple
parametric operating rule for hourly flood control operation.
Part of the operating procedures at major flood control
reservoirs include "standing instructions to damtenders". The
detailed operating procedures at a flood control reservoir are
designed to utilize a wide range of hydrometeorologic data to
guide operation (see section 7). The information available to
the reservoir operator will include Quantitative Precipitation
Forecasts issued every 12 hours by the National Weather Service,
telemetered observations of precipitation and streamflow both
upstream of the reservoir as well as for critical locations
downstream. From the synthesis of this data careful control of
reservoir outflow will be maintained to utilize the limited
volume of flood control most effectively. Nevertheless, the
failure of communication channels providing this information
must be anticipated, and contingency operating procedures using
only the observations available at the reservoir must be a part
of each reservoir operating manual.

The U.S. Army Corps of Engineers (1959) describes this need:

“It is essential that damtenders at the various flood

control and multiple-purpose reservoirs be supplied with

regulation schedules to be followed in case of failure of
communications with the headquarters from which instructions
are normally issued during flood periods. The emergency
regulations are usually expressed in terms of pool

elevation, rate of rise, and release so as to obtain a

reasonable amount of flood regulation over a wide range of

storm conditions and still function in a manner similar to
that assumed for design in the event of a flood of project
magnitude."

The parametric operating rules developed in this section can
be used by a "blind" reservoir operator with a minimal
description of operating goals for the flood.

In addition, parametric rules can provide a quick screening
of operating benefits in storage allocation studies.
Reallocation studies typically consider the expected value of
flood damages resulting from alternate allocations of flood
control storage. The operating rules used in these studies are
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rarely optimized to reflect the change in available storage.

The parametric operating rules we develop are easily modified to
find a good regulation for changing storage volumes, and could
be a useful part of screening level design studies of flood
control alternatives.

6.2 CHARACTERISTICS OF FLOOD CONTROL OPERATION

Flood control storage mitigates flood damages by storing
streamflow that cannot be released without causing damages.
Beard (1963) describes good flood control practice as "releasing
water whenever necessary at the highest practical rates so that
minimum space need be reserved for flood control". As
conditions over the basin change, so too will reservoir
operations. Kelman (1980) modeled the rising and falling limbs
of the hydrograph separately, reflecting conditions that were
dominated by fundamentally different hydrologic processes.

While the rising limb reflects conditions originating external
to the basin, the falling limb reflects the spatial and
geomorphic properties of a basin that determine its drainage
characteristics.

Flood risks will also vary over the rising and falling limbs
of the hydrograph, and flood control operations should reflect
this difference. On the rising limb of a flood hydrograph
inflow will be stored to reduce the peak discharge downstream
from the reservoir. This detention of inflow prevents runoff
from contributing to the flood peak at critical downstream
locations. On the falling limb of the flood hydrograph a rapid
controlled evacuation of the flood pool is desired.

Operating rules for the rising limb will be cautious,
storing inflow to meet operating targets determined from
analyzing the flood forecast. On the falling limb, operating
rules will set an acceptable release rate to prudently empty
flood storage. The operating rules for the rising and falling
limb are structured to reflect damage prevention downstream from
the reservoir. We include a third flow state, in which
operating rules tend to pass the inflow, without modification.
When flow is rising and reservoir storage is nearly full, there
is a danger of overtopping the reservoir. Under these risky
conditions damage prevention must become secondary to protecting
the structure. The parametric operating rules include simple
criteria for identifying this risky situation, and adjusting
releases to avoid overtopping the reservoir.

6.3 FLOOD REGULATION - ATTENUATION AND DELAY

The regulation of a flood hydrograph can be characterized as
a transformation of the magnitude and timing of runoff. When
flood protection is being provided to an area that is mainly
influenced by the controlled drainage area, the most efficient
use of flood storage is to minimize the maximum discharge of the
regulated flood hydrograph. When flood prone areas are
influenced by considerable uncontrolled drainage from watersheds
downstream from the reservoir, the timing of flood releases may
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be more critical in reducing flood damages than the magnitude of
releases.

The two parameters for the rising limb operating rule are
the delay, in hours, and the maximum permissible release, in
cfs, during rising inflow. In general flood control regulation
will both delay and attenuate the inflow hydrograph. Good
regulation of the flood hydrograph will balance the use of
limited storage to control both the magnitude and timing of
releases. In practice, high flow events of moderate magnitude
can fill reservoir storage. In the limit, attenuation and delay
converge to identical operating decisions as the entire flood
hydrograph is stored.

When river stages are clearly falling over the basin falling
limb operation begins to release the stored flood waters. Some
common operating procedures for falling reservoir levels and
decreasing inflow are 1) drawdown to static full pool level
within a specified number of hours; 2) maintain maximum gate
openings; 3) release a fixed percentage (greater then 100%) of
the mean inflow for the last three hours. The falling limb
operating rule uses a prespecified drawdown discharge to
accelerate the releases of stored inflow. The next section
describes the operating rules in detail.

6.4.1 INITIAL OPERATING DECISIONS

Prior to beginning operation, the parameters Rmax, n, and
Rfall are determined, setting the maximum target release, the
delay in the flood hydrograph and the maximum release rate to
drawdown the reservoir, respectively. Operation begins when the
observed inflow during time t, Qf exceeds a predetermined
threshold approaching flood stage. For inflows below this
level, with an empty reservoir, all inflow is released. If
reservoir storage in time t, St is close to the capacity, CAP,
of the flood pool, the release rate for period t, R is set as:

Ry = Max( Q¢ , Rmax) (6.1)

If neither of these extreme conditions exist, the parametric
operating rules determine release rates to delay and attenuate
the inflow hydrograph.

6.4.2 RISING LIMB RELEASES

When flows are rising release decisions must be cautious,
storing inflow that may contribute to damages. To reflect this
caution we are extremely conservative in defining the state of
the basin as rising. First the current storage is compared with
storage in the previous period. If storage is not falling we
use cautious rising limb operating rules. We similarly compare
the change in inflow with the observed inflow n hours ago (where
n is the ’delay’ operating parameter. If current inflow, Q¢ is
not less then Q. we consider the state of the system to be
rising. Finally we check the hydrograph from ’‘n’ hours ago, if
Qt-n+1 > Qt-p we use the rising limb operating rule.
. On the rising limb we try to delay runoff by '‘n’ hours,
while limiting the maximum release to Rmax. The proposed release
is therefore:
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Rproposed = Min(Qt_pn, Rmax) (6.2)

To keep rising limb releases less then natural inflow we
modify (6.2) as :

Rproposed = Min ( Qt, Qt-p, Rmax) (6.3)

Releases greater than Roroposed will only be made under two
conditions. If prior rising limb releases have already exceeded
Rmax, and Rmax is greater than Rproposed, the higher previous
release will be maintained. This prevents secondary peaks
downstream, after floodwaters have started to recede. To
accomplish this we add the memory of a prior release at Rmax as
Rp.

P

Rp = Max ( Rp, Min(Ry-1,Rmax)) (6.4)

As reservoir storage becomes full, rising limb operations
become more cautious. Release rates will increase in order to
pass inflows that cannot be stored. The transition to a
cautious operating state is imperfectly perceived. When the
reservoir is full, all operating goals become secondary to
protecting the structure. When storage is empty, release
decisions are guided by prescribed damage preventing operating
goals. A cautious release decision is proposed in every time
period using the fraction of available storage as an indication
of the degree of caution to be employed in the current state.
The cautious release is calculated as:

Rg S==m==== Q¢ (6-5)

The fraction of inflow to be released in order to protect
the reservoir is here defined as a linear function of the
available storage. This implicitly represents a risk
preference. The cautious release function could be an arbitrary
concave or convex function of the relative storage availability,
reflecting more or less cautious operation, respectively. The
significant feature of the cautious release is that it increases
to 100% of inflow as reservoir storage fills.

The rising limb release is now determined as:

Ry = Min (S¢*Qt, Min(Rproposedr Rc: Rp) (6.6)

6.4.3 FALLING LIMB RELEASES

The conservative definition of a rising state, combined with
the cautious release R, ensures that falling limb releases will
only be called for when flood conditions are diminishing. The
goal of falling limb operation is to drawdown reservoir storage
at the target discharge rate Rfall. For large values of delay,
Qt-n may be greater than Rfall. In this case release follows
the falling limb of the inflow hydrograph until lagged inflow is
less then Rfall. To ensure operating targets will not be

-131-



violated by a large delay, the falling limb release can never
exceed Rmax. Finally the release cannot exceed total storage
plus inflow. The falling limb release is determined as:

Rt = Min (Rmax, Max (Rfall, Qt.pn), St + Qt) (6.7)

The parameter Rfall is optional. If Rfall is set to zero,
the falling limb operating rule releases will follow the falling
limb of the inflow hydrograph, delayed ‘n’ hours.

6.5 PARAMETRIC OPERATION

In this section examples of flood control releases generated
with the parametric operating rules are presented. The utility
of the parametric rules is suggested in both real-time
operation, as part of the standing instructions to damtenders,
as well as a planning context.

6.5.1 STANDING INSTRUCTIONS TO DAMTENDERS

To suggest the utility of the parametric rules as part of
standing instructions to damtenders, a loss of release guidance
is simulated. We suppose normal operation for a 65000 cfs-hr
flood control reservoir relies on a sophisticated operating
procedure, utilizing radar imagery and telemetered
precipitation and streamflow to make release decisions that
hedge against hydrologic uncertainty. After an initial
evaluation of expected flood control operation based on the
current forecast, all communications with the control center is
lost. The only information the reservoir operator has is a
tentative release trajectory leading to a maximum release of
20,000 cfs, and a delay of the peak discharge of six hours.
These parameters are used to provide a regulation of the flood
using only the observed inflow at the reservoir to determine the
release in each hour.

Figure 6.1 shows the inflow hydrograph and the releases
resulting from a parametric operating rule calling for a 6 hour
delay and a maximum release of 20,000 cfs. The threshold flow
that initiates operation is arbitrarily chosen as 3000 cfs for
this example. A number of features of the parametric rules are
illustrated in this example. Even though the maximum release
target was 20,000 cfs, the maximum release was actually 21,571
cfs at hour 32. At this time the state of the system was still
rising (since inflow was greater than release) and storage was
92% full. The cautious release Ro dominated the parametric
operating targets, and a larger release was made to reduce the
risk to the dam.

Although the drawdown release is arbitrarily set at 10,000
cfs for this example, falling releases are never made at that
release rate. To preserve the 6 hour delay target, releases at
hour 38 attempt to release the inflow from hour 32. Since this
exceeds the release target, Rfall, the falling limb release is
set at Rmax, 20,000 cfs. At this high release rate reservoir
storage is emptied before the 6 hour delayed inflows fall below
10,000 cfs (which would have caused releases at the rate Rfall)
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The parametric requlation of the hydrograph in Figure 6.1 uses a
maximum of 92% of the available 65,000 cfs-hr flood storage.

This particular example was chosen to enable a comparison
with the operating rule developed in chapter 7. The stochastic
multiple objective operating rule developed in chapter 7 uses
forecast information each hour to identify operating decisions
that hedge against hydrologic uncertainty. The operation of
that rule on the same flood hydrograph as Figure 6.1, is shown
in Figure 7.14. The operating parameters of 6 hours and 20,000
cfs come from the operating rule in Section 7.

6.5.2 SCREENING OPERATING ALTERNATIVES

The parametric rule can also serve as a planning tool in
evaluating feasible operating plans during a flood, as well as
providing operating alternatives for design events in design
studies for flood control storage. The flood considered in
Section 6.5.1 is reexamined using other combinations of delay
and attenuation to evaluate the most efficient use of storage.
For runoff volumes that are significant compared to the volume
of flood control storage, the storage cost of even a few hours
of delay is high. The parametric rule suggests considerable
reductions in peak discharge can be achieved if delay of the
flood hydrograph is reduced. The value of this tradeoff will
depend on the configuration of the basin, the location of the
key damage centers, and the timing of uncontrolled downstream
runoff.

Considering the uncertain environment in which real-time
decisions must be made, an error of only a few hours in the
choice of operating goals can have severe consequences in terms
of flood crests produced. Parametric operation suggests risk
averse reservoir operators may prefer to attenuate rather then
delay large floods when forecast uncertainty is high.

Figure 6.2 shows three alternate regulations for the flood
hydrograph considered in Section 6.5.1. These parametric rules
were chosen to emphasize the relative value of peak attenuation
over delay for large runoff volumes. The three parametric rules
considered are summarized in Table 6.1.

Accepting no delay in the inflow hydrograph makes a
substantial volume of storage available for peak attenuation.
Attempting to reduce the peak to 10,000 cfs is infeasible.
Storage is inadequate, and the cautious release leads to a
19,623 release to protect the structure. A maximum release of
15,000 cfs is feasible and only uses 51,300 cfs-hrs of storage.
The value of the six hour delay specified in the parametric rule
in Section 6.5.1 must be weighed against a reduction of the
maximum controlled flow of over 25%. The relatively small
volume of storage required for a maximum discharge of 20,000 cfs
suggests a number of compromise operating rules are feasible
that will significantly reduce the flood peak while allowing a
delay in the timing of runoff. The storage cost of delay can be
large when the runoff volume is significant compared to the
volume of flood storage available. For real-time reservoir
operation in an uncertain environment an error of only a few
hours in delaying the flood hydrograph can deplete the available
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volume of flood storage. Cautious operating strategies may
favor parametric operating rules emphasizing attenuation rather
than delay for large runoff events in an uncertain environment.

6.5.3 PARAMETRIC OPERATION OF JENNINGS RANDOLPH RESERVOIR

In this section the Standard Project Flood (SPF) for
Jennings Randolph reservoir is examined using parametric
operating rules. Figure 6.3 shows the Jennings Randolph SPF
hydrograph. In studying the reallocation of flood control
storage in Jennings Randolph reservoir, the Baltimore District
of the U.S. Army Corps considered operating consequences of
reducing the size of the flood control pool. The Corps’
regulation of the SPF effected a delay of the time to peak of 5
hours, with a maximum discharge of 40,000 cfs. The parametric
operating rule with these operating targets was used to produce
the regulation of the SPF shown in Figure 6.4. Figure 6.5 shows
the result of two operating rules with parametric targets of 5
hours and 40,000 cfs, and 10 hours and 20,000 cfs. The 10 hour
20,000 cfs rule, while more desirable, is not feasible. The
storage fills so rapidly that large releases must be made to
protect the structure. Although the maximum release target was
only 20,000 cfs, a caution dominated release of 46,000 cfs is
made at hour 36.

Finally Figure 6.6 shows the result of two feasible
parametric rules. The 5 hour - 40,000 cfs rule is compared to a
0 -hour 35000 cfs rule. The relative value of 5 hours of delay
versus 5000 cfs of peak reduction must be evaluated in terms of
downstream flow conditions, as well as the uncertain environment
in which these decisions must be made. The parametric rule can
be a useful tool for quickly evaluating a wide range of
operating alternatives in flood regulation studies.

6.6 SUMMARY

A family of reservoir operating rules has been identified
that captures many of the characteristics of flood control
operation. The operating rules can be parameterized from
operating plans based on forecast information and full
communication of radar, precipitation, and streamflow data in
real-time. Once the parameters are estimated, the parametric
rules appear to offer acceptable releases based only on flow
observed at the reservoir. The parameterized operating rules,
in conjunction with standard, sophisticated real-time operating
procedures may be suitable for providing contingency reservoir
releases as part of the standing instructions to damtenders.

In a planning context, simulation over a range of parameters
can quickly screen feasible operating alternatives for more
rigorous analysis. The rapid evaluation of closely related
operating rules would be useful in both planning studies,
evaluating alternate storage allocations, as well as in real
time operation to estimate operating targets and risks based on
forecast information.
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FIGURE 6.1
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FIGURE 6.2

(8Jnou) HNIL

LS

-~ 000G

: -~ 00003

: s
i i ‘l —
; —C00GE 3
: 3
: ! 00002 i1
: . , . ; &
, v K —-poosz ©
: —0000E

; -+0008E

P R

e T e G G e R R N N S Y SR RTINS T RSSO em s SheRRRA o —e. - GG @ wAn WE s - DRODF

Lerap pue uoijenusije

NOILVYHIJO T0HINOD COo0

=136~




FIGURE 6.3
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FIGURE 6.4
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FIGURE 6.5
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FIGURE 6.6
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Table 6.1

maximum
release

delay Rmax Smax

o 10,000 60,938 19,623
0 15,000 51,300

0 20,000 25,300
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CHAPTER 7

STOCHASTIC MULTIOBJECTIVE REAL-TIME

FLOOD CONTROL OPERATION
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7.1 INTRODUCTION

In this chapter the use of forecast information in
multiobjective reservoir operation is developed for the problem
of real-time operation of a flood control reservoir. The
probabilistic nature of streamflow and precipitation combined
with finite storage capacity requires operating decisions that
trade-off conflicting risks. The reservoir operator’s problem
is presented as a reliability programming problem, noting the
symmetry of the operation and design problem. Reliable damage
prevention fully utilizes reservoir storage, increasing other
operating risks. The goal of the operating problem is to
determine the optimal non-damaging temporal allocation of inflow
to available storage, utilizing both reservoir and channel
capacity.

Decisions to commit reservoir storage to inflow in real-time
flood control operation are viewed as a stochastic sequential
allocation problem. Some general optimality criteria for
sequential allocation problems are considered and related to the
real-time operation of flood control reservoirs. Extending the
analogy with sequential allocation problems, a stochastic
multiobjective algorithm is developed for hourly flood control
operation.

The real-time operating problem for a flood control
reservoir is formulated as a two-stage recourse problem with
feedback. A simple parameterization of storm structure is used
to describe the distribution of runoff during the storm event.
Two-stage programming yields the current period release which
minimizes the expected value of downstream damage under the
current estimate of storm parameters.

Using a multiple objective formulation, decisions are
generated that trade-off the expected value of downstream damage
and the risk of overtopping. In addition to choices that are
non-inferior based on first moment information, the joint
distribution of stage and storage is also presented to the
decision maker, clarifying the risky alternatives that are
available.

7.2.1 FLOOD CONTROL OPERATION - HEDGING AGAINST UNCERTAINTY

Given the uncertainty of reservoir inflow during a storm
event reservoir operation must hedge flood control release
decisions against estimation errors in both the timing and the
magnitude of flood runoff. Each operating decision is a
commitment of the limited storage that is available. This
commitment of storage must balance the damages prevented by
storing inflow against the risks of using limited storage
inefficiently.

Consider the reservoir operator’s problem when faced with a
forecast simply represented in Figure 7.1l. For illustration, we
suppose the operator has been observing a flood rise, and has
been provided a forecast in the form of three possible inflow
hydrographs, for which probabilities of occurrence have been
determined. Without loss of generality we assume the only
source of uncertainty is in the magnitude (not the timing) of
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runoff. To simplify the operating problem further, we assume
flood damages are determined only by peak discharge (not
duration of damaging flow), and that the reservoir completely
controls the drainage area upstream from the damage site of
interest. With no uncontrolled intervening drainage between the
reservoir and the damage site, the optimal regulation of a flood
hydrograph is to store the peak discharge using all available
storage. This regulation will achieve the greatest reduction in
peak discharge and, under the damage assumption, greatest
reduction in damage. For a fixed capacity reservoir the optimal
regulation of each of the three likely flood futures is
represented in Figure 7.2.

The operator’s problem is now more clear. Given the
probability of each likely hydrograph, and the optimal
regulation for each, the operator must determine how much runoff
should be stored in the current period. If the operator was
certain that the low runoff hydrograph would be realized,
regulation would clearly begin in the current time period. The
operation for the high runoff hydrograph would delay any
regulation until later in the event. The uncertainty in the
forecast requires the operator to hedge his operating decisions.

There are two ways in which the operator can err in the face
of uncertain inflow. If the magnitude of runoff is
underestimated, the operator will commit too much storage too
soon in the flood event. When the true flood peak is realized
insufficient storage will be available. 1In this case the
operator will be forced to release inflow, causing damages that
could have been prevented. If the magnitude of runoff is
overestimated, the operator will release the rising inflow,
reserving storage for a flood peak which will not appear. 1In
this case the operator will fail to store the true peak flow,
again causing damages that could have been prevented.

The operator needs to make prudent operating decisions while
hedging against hydrologic uncertainty. 1In this allocation
decision hedging implies balancing the expected loss of benefits
in the short-term against much greater probabilistic losses in
the future.

Traditionally, hedging against hydrologic uncertainty in
flood control operation is achieved through structural means by
constructing sufficient capacity to store damaging flows with
long recurrence intervals. Design based on the Standard Project
Flood (SPF) has furnished a structural measure of reliability in
most large flood control reservoirs built in the U.S.

Regulation of SPF designed flood control reservoirs, often
follows operating rules that completely store inflow when levels
at a downstream control point approach flood stage, retaining
this runoff in storage until either

a) stages are clearly falling or
b) storage is nearly full requiring regulating
releases to prevent over topping.

This regulation implicitly stores inflows which might cause
damages if released. 1In this sense, we can formalize a
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parametric regulation for which our objective is to minimize the
probability of contributing to damages downstream. If we denote
by O the complete, current, probabilistic forecast of flood
runoff, and let Rt be the release in time period t we can define
the operator

Ma (Q,St) as the release, for which the conditional
probability of causing any damage is = a 1i.e.,

Pr (Rt>R*,Re+1,>R*...Rp>R*| Q,Ry.1,R¢-2..Rg)=a

where R* corresponds to the threshold of damage and Sy is the
volume of runoff held in flood storage during time period t.

In this sense the reservoir operator’s problem can be stated as:

Min a
s.t. Ry = Mg (Q,5¢) t=1,2,...T
St-St-1-It+Rt=0 t=1,2,...T
St ﬁ_Scap t=l,2, .T

Implicit in the operator M;(Q,St) are conditional release
decisions through the end of the current operating horizon. 1In
practice Mz(Q,S¢) will embody heuristic procedures or
optimization algorithms for determining reservoir releases
conditioned on changing hydrologic conditions.

The importance of incorporating optimal operating rules in
reservoir design is emphasized by the symmetrical design
problem:

Min Scap
s.t.
Ry = M3(Q,St) t=1,2,...,7T
St=St-1-It+Rt=0 t=1,2,+e¢s,T
St i_Scap t=l,2,. .T

where Sgap is the capacity of the flood control reservoir.

In general, the reliability of damage reduction, and the
volume of flood control storage are linked in a multiobjective
optimization problem:

Min(a'Scap)

s.t. Rt = Ma(Q,St) t=1,2,...,T
St-st-l-It+Rt=0 t=l,2,--.,T
StiScap t=l,2;o' ,T

Consider the reservoir operating problem in which Sgap is
fixed. As a is reduced more storage will be utilized throughout
the storm event. While increased reliability in damage
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reduction is desirable, increased storage utilization represents
an additional operating risk.

In an informal way a full reservoir represents an increased
risk of being "caught" with inadequate storage if a second,
unexpected storm system effected the basin before draw down is
complete. The release of stored floodwaters is a critical part
of flood control operation. The U.S. Army Corps of Engineers’
Reservoir Regulation Manual (1959) notes:

"...the nondamaging release of such stored water frequently
presents greater difficulties than the storage phase. The
primary objective is to empty the storage space allocated to
flood control as rapidly as possible without increasing or
unduly prolonging the duration of damaging stages at
downstream locations. ... In the event of a succession of
severe storms, the storage operations during the storm
periods may be entirely dependent upon the degree to which
the storage space can be emptied between the storms."

In a more general context this is just another case of
forecast uncertainty, or underestimation of runoff. As the
reservoir fills, the risk of overtopping increases as well,
raising the possibility of a catastrophic structural failure. A
more general statement of the problem recognizes hedging of
current releases against future damages, as well as hedging
against inefficient drawdown and structural failure that can
result from overfilling reservoir storage.

7.2.2 HEDGING AND RESOURCE ALLOCATION

Real-time operation takes place in a changing, uncertain
environment. The sensitivity of operations to forecast
uncertainty will determine the need and value of a complex
stochastic operating policy. Stedinger (1985) and Mays et al.
(1987) have considered large reservoir systems in which the main
source of hydrologic uncertainty is river routing. For the High
Aswan Dam, the runoff volume is observable upstream, weeks
before reaching the reservoir. 1In the Texas high lakes, major
flood waters are observed on tributaries several days before
reaching the controllable flood reservoirs. For these
applications hydrologic uncertainty is relatively small. The
operating problem is largely one of optimal storage allocation
rather than optimal hedging.

In contrast, the real-time flood control problem generally
has a significant hedging component. The greater the volume of
flood runoff, the greater is the need to hedge. For floods in
which the runoff volume is significantly less than the flood
storage volume, reservoir operation is largely an allocation
problem. As the probability of filling the flood pool
increases, so too does the need to hedge against hydrologic
uncertainty. SPF design provides incremental flood storage
which is infrequently used. The most frequent flood operating
problems become dominantly allocation rather than hedging
decisions. The transition from allocation to hedging dominated
operation is related to the risk of filling the flood pool.

The need to hedge was considered by Bellman in a general
sequential allocation problem in which a policy choice y is to
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be made to optimize the allocation of a fixed resource x.
Defining f(x) as the total return from the optimal allocation of
an initial resource x,

f(x) = Max [R(x,y) + f(x-D(x,y))]
Y

where: R(x,y) - denotes the immediate return from choosing
policy y when an amount x of the resource to
be allocated is available.

D(x,y) - denotes the immediate cost of choosing policy
Yy when an amount x of the resource is
available.

Then

£(x)~ Max [R(x,y) + £(x) - D(x,y)£’(x)]
Y

for ' 0 < D(x,y)<< x
or

0 ~ Max [R(x,¥) - D(x,¥)£’(x)]
Y

At optimality,

f'(x) = Max R(x,v)
Yy D(x,y)

The maximum net short-term value of the current policy
decision will equal the long-term marginal value of the
available resource. If the resource cost of a policy is small,
the optimal policy simply maximizes-the -immediate,  short-term.
return.

An analogous conclusion can be reached for an explicitly
stochastic problem. Consider now a distribution of a set of
returns (z) * R(x,y,z) and of costs w ~ D(x,y,w). Maximizing
the total expected returns, implies:

£(x)= Max[ ? z d R(x,Y,2) + f(x - f wd D(x,y,w))]
Y 0 0

now, as before, for small expected costs, i.e.
[--]

J] wd D(x,y,w) <<x
0

it is approximately true that
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and

= Max E({Immediate Return)
y E(Immediate Cost)

where E(.) is the expectation operator.

The conclusion is that myopic, short-term benefit maximizing
decisions will be nearly optimal for resource allocation
decisions in which the immediate resource cost of policy
decisions is small compared to the availability of the resource.

This intuitively reasonable result is applicable to the
flood control problem. We can view real-time flood control
operation as a problem in allocating the limited volume of the
flood control reservoir to storing reservoir inflow. When
runoff is small compared to flood storage capacity, the resource
cost is small for any policy. (We could store the entire flood
event, preventing all damages without exhausting reservoir
storage). Allocating storage using a simple myopic policy will
be optimal; hedging against hydrologic uncertainty is
unnecessary. As successively larger floods are considered the
resource cost of many policies is no longer insignificant; the
small cost assumption:

0 <D (x,y) << x

will no longer hold, and the myopic policy will become
increasingly suboptimal.

' The general stochastic allocation problem suggests that
decisions which maximize the relative expected short-term gain
will be nearly optimal much of the time. A number of workers
have reached similar conclusions for specific applications.
Based on Monte-Carlo simulation Young (1967) concluded in a
water supply context that reservoir draft equal to mean inflow
was an optimal or near optimal control law. Klemes (1977)
reached a similar conclusion. Simon (1956) examined a set of
stochastic sequential decision problems and showed:

"When the criterion function is quadratic, the planning

problem for the case of uncertainty can be reduced to the

problem for the case of certainty simply by replacing, in
the computation of the optimal first-period action, the

"certain" future values of variables by their unconditional

expectations."

For a water resource system Cornish (1979) used simulation
to calculate the sensitivity of the present value of benefits to
various moments of stochastic flows. Cornish concluded benefits
are most sensitive to changes in the mean of inflow, but changes
in the second and third moments of inflow have a negligible

-148-



effect. These results suggest near optimal decisions can result
from the reduction of a stochastic sequential decision problem
to a deterministic problem by substituting the stochastic inputs
with their expected values. Dantzig (1963) analyzed a two stage
recourse problem with uniformly distributed random inputs. He
showed that the optimal solution (first stage cost plus the
expected value of the second stage cost) for the stochastic
two-stage problem, was identical to the solution for the
deterministic problem formed by substituting the stochastic
input with its expectation.

Nevertheless there are times when hedging is required.

7.2.3 STOCHASTIC SEQUENTIAL ALLOCATION

Manne (1967) analyzed the two stage recourse problem,
reconciling the apparent optimality of deterministic solutions
with the need to hedge against uncertainty. The two-stage
recourse problem is formulated as:

Min E (c’'x + £'y)
b

s.t. Ax + By = b
X, y, >0
In the recourse problem we observe the realization of the
random vector b after choosing the first stage decision variable

x, and then choose y in order to minimize c’x + f£’y. (noting
y=B-1[b-ax])

We want to find

E (c’'x + £'y%)

Min z =
x b
= E Min (c’'x + f'y)

L} b Y
Let

C(b,x) = Min (c’x + f’y) for a given x

b
Then

Min E C(b,x)
X b
is referred to as the "here and now problem".
In other words we choose x "here and now", before b is

observed in order to minimize the expected cost of x and the
optimal recourse decision y. Following Manne,
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E Min C(b,x)
b x

is called the "wait and see problem". This is the expected cost
of choosing both x and y after waiting to observe the
realization of the random variable b.

One operating heuristic frequently employed is to solve the
two-stage problem by forming a deterministic optimization
problem in which the random vector is replaced with its
expectation, Eb. This problem, denoted

b

E C(b,x(Eb))
b b

is referred to as the "Deterministic Approximation".
Define

x(b*) = {x|Min C(b*,x) = C(b*,x(b*))}
X

for any realization b* of b.
Since the "here and now" problem admits x(Eb) as a feasible
solution it is clear that

E C(b,x(Eb)) > Min E C(b,x)
b b b

X
Since

Min C(b,x) < C(b,x)
b4
and

E Min C(b,x) < E C(b,x)
b x b

it follows that

E Min C(b,x) < Min E C(b,x).
b x X

Therefore,

E C(b,x(Eb)) > Min E C(b,x) > E Min C(b,x)

b x b b x
deterministic Here & Now Wait & See
approximation problem problem

In general the deterministic approximation will be bounded
from below by the here-and-now problem. However, if

C(b,x) is linear in b then E C(b,x) = C(Eb,x)
b
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and, in particular the deterministic approximation will yield an
optimal solution for the two-stage recourse problem. As myopic
decisions were optimal for some allocation problems, myopic
decisions are also optimal for some, but not all stochastic
sequential decision problems.

More generally the expected returns from allocation
decisions based on expected value information only, will be
bounded from below by stochastic optimization problems which
explicitly take into account future uncertainty. Similarly,
real-time sequential decisions will be bounded from below by the
"true" optimal solution calculated with perfect forecast
information. While solutions based on expected value
information may prove optimal under some circumstances, this
will not in general be the case. The optimal real-time decision
problem must hedge against future uncertainty.

7.3 STOCHASTIC MULTIOBJECTIVE FLOOD CONTROL OPERATION

In this section algorithms are considered for real-time
flood control operation. We consider a single flood control
reservoir, located above a critical reach influenced by
significant uncontrolled drainage. The operating goal is to
minimize potentially damaging releases by temporarily storing
runoff from the controlled watershed. The use of a stochastic
multiobjective algorithm in flood control operation is a unique
approach to the real-time operating problem.

Real-time decisions must utilize the description of
hydrologic uncertainty from the current forecast, to balance the
conflicting risks of operating a flood control reservoir. The
stochastic sequential decision problem is approximated with a
two-stage recourse formulation. The current forecast provides
an estimate of the joint density function of hydrologic inputs.
The current period release, determined in the two-stage recourse
problem reflects current operating risks.

Conflicting operating risks are managed with a multiple
objective formulation. The regulation decision given a storm
forecast can be represented as a tradeoff of peak discharge
(damage) reduction and peak storage utilization. This tradeoff
captures the balance which must be struck between the risk of
flood damages and the risk of structural failure. These
conflicting risks are probabilistic products of release
decisions which transform current storage and inflow along with
current forecast conditions, into a net, effective reservoir
regulation for a flood event.

A stochastic multiobjective two-stage recourse algorithm
with feedback is proposed for the real-time operation of a flood
control reservoir. The algorithm is developed for a single
flood control reservoir protecting a downstream damage site.
The effects of significant uncontrolled drainage and channel
routing are explicitly included in the operating formulation.

Using a parameterized estimate of current hydrometeorologic
conditions, the expected value of both peak discharge at the
downstream damage site, as well as peak storage utilization
during the flood are considered. From this expected value
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information, first moment non-inferior operating alternatives
are generated in each hour. Peak discharge is taken as a
measure of the damage potential downstream. Peak reservoir
storage represents the risk of exhausting reservoir storage
before flood risks have subsided, as well as overtopping the
structure.

The proposed multiobjective algorithm allows the joint
distribution of peak storage and peak discharge to be estimated
for each non-inferior solution, giving the reservoir operator a
complete description of the associated risks. Both chance
constraints and expected value optimization are shown to be
inadequate in representing the full range of operating risks
associated with each first moment non-inferior solution.

Throughout this analysis we assume maximum discharge
corresponds to maximum damage. The duration of flows above
flood stage is not considered. A stage-damage function could be
incorporated in the operating algorithms considered in this
section. Such a function would allow recognition of damage
zones which will significantly guide operations in specific
applications. Using a stage-damage function, for example, an
operator could recognize the level at which a flood plain is
likely to be inundated. For areas with limited flood plain
development, but significant structural development above the
flood plain, operations may well allow inundation of the flood
plain, reserving flood storage for flows which would cause
damage to the development at higher elevations. Without loss of
generality we consider only peak discharge as the measure of
damage, recognizing the value of incorporating the site specific
non-decreasing stage damage function for all applications.

7.3.1 CHANNEL PACKING

Real-time flood control operation occurs in an uncertain,
evolving environment in which current forecasts as well as
observed precipitation and runoff are combined to make
sequential management decisions. If the inflow and uncontrolled
hydrographs were known with certainty, simple algorithms could
provide an optimal regulation of the flood hydrograph. Figure
7.3 shows a representative hydrograph for a basin downstream
from our flood control reservoir. Assuming peak discharge alone
determines the level of damage, releases could be made
contributing to this hydrograph, without increasing the maximum
discharge. The shaded area in Figure 7.3 represents the
equivalent volume of channel storage which is available to pass
controlled runoff. Exploiting this transient channel storage
allows the flood wave to be passed in less time, using less
reservoir storage, without increasing the damage producing
stage.

Uncertainty in the timing of uncontrolled runoff reduces the
channel storage available for flood routing, as Figure 7.4
indicates. As this uncertainty increases, the risk that a
reservoir release contributes to downstream damages also
increases. Greater uncertainty requires increased use of
reservoir storage. Uncertainty in the magnitude of uncontrolled
runoff similarly reduces the volume of channel storage available
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to safely pass the flood wave, increasing the use of reservoir
storage.

For real-time flood control operation in which hydrologic
forecasts guide operation, the "optimality" of a flood
regulation can only be judged in terms of optimal hedging
against current hydrologic uncertainty. In contrast to the
optimal deterministic regulation which can only be evaluated
after flooding runoff has been observed, (the "wait and see
problem" of section 7.2), the optimal real-time regulation must
find releases which will allow near optimal operation over the
current estimate of the probability density function of £flood
runoff (the "here and now problem"). Uncertainty in the flood
hydrograph will cause the real-time regulation to be bounded
from below by the deterministic a posteriori regulation of the
flood hydrograph. The challenge of real-time operation is to
achieve operating benefits that approach this lower bound while
prudently hedging against hydrologic uncertainty.

7.3.2 PARAMETERIZING THE FLOOD FORECAST

A simple parameterization of the current hydrologic forecast
for the multiple basin system is presented which can be derived
from a variety of flood forecasting methodologies. This
reflects the way in which the operating algorithm utilizes
feedback of hydrologic state observations at each time step to
correct for the separation of hydrologic state estimation from
the solution for an optimal release.

The current forecast provides an estimate of the magnitude
and timing of runoff on each watershed in the system. The
simple system considered here consists of two watersheds. One
is controlled by the flood control reservoir, the other
contributes unregulated runoff effecting the downstream damage
site. For this system the hydrologic forecast can be
represented as:

Qt = {dc, Qu, dt} (7.1)
where:
gc and gy, represents the current estimate of the runoff

hydrograph from the controlled and
uncontrolled basins respectively

dt is the difference in hours between the peak
discharge for each of the runoff hydrographs

Since the hydrologic state Qt represents the current
forecast, Q¢ is a random vector whose components have an
estimated mean vector My and estimated covariance matrix Vg.

At each time step we assume a current flood forecast has been
prepared for each basin in the system. A great diversity of
flood forecasting techniques are available. The general
approach taken in this operating model is to separate the
operating algorithm from any one forecasting technique. We
assume the general description of magnitude and timing of runoff
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in eq. 7.1 can be derived from the forecast technique or
techniques being used. The distinguishing feature of this
representation is that any forecast can be incorporated in the
operating algorithm when represented as a joint probability
density function.

The probabilistic forecast representation of eq. 7.1 could
be derived from statistical streamflow forecasting models (Moore
1982, Kitanidis and Bras 1978, Ozaki 1980). Conceptual models
used in adaptive forecasting procedures (Kitanidis and Bras
1980a, Kitanidis and Bras 1980b, Pegram and Stretch 1982, Logan
et al. 1982) could similarly provide a probabilistic forecast.

The major source of uncertainty for short-term flood control
operation is the depth and distribution of precipitation.
Short-term precipitation forecasting procedures using raingage
networks (Johnson and Bras 1979, 1980) or a conceptual
meteorological model (Georgakakos and Bras 1984a, 1984b) can
drive a conceptual hydrologic model to provide a probabilistic

forecast of runoff (Troutman 1982). The use of rain-gage data
combined with radar images can provide maximum likelihood
estimates of storm rainfall (Eddy 1979). The use of radar

imagery in short term precipitation forecasting provides
resolution of the velocity and spatial extent of storm systems
(Austin and Bellon 1974, Klatt and Schultz 1983). Automated
algorithms using pattern recognition have been used to project
storm trajectories, providing temporal resolution for flood
forecasting (Unny 1982).

Without employing a particular algorithm for pattern
recognition and projection, we note that many such procedures
have been developed to provide real-time storm predictions. We
assume the availability of such a forecast system for
precipitation, as well as the availability of calibrated
hydrologic models for the generation of likely storm
hydrographs. The simple forecast structure envisioned
transforms the current set of meteorologic observations into a
distribution of precipitation and runoff over each basin.

We assume the flood forecast at each time period can be
represented as a conditional joint distribution of precipitation
and peak runoff:

Q't = {Pc + Pu r dt}

where pc and p,; represent the storm hyetographs for the
controlled and uncontrolled watersheds, respectively, and dt
represents the distribution of the time between peak discharges
for the two watersheds. The components of the state vector
again have an estimated mean and estimated covariance structure
arising from the forecast procedure.

This conceptual forecast structure combined with a
hydrologic model allows the generation of 1likely flood futures
and their associated probabilities for the system. We wish only
to suggest the plausibility of forecast information in real-time
which provides a joint probability distribution for the
hydrologic inputs of the system. With this representation of
hydrologic uncertainty we turn to the stochastic multiobjective
operating algorithm.
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7.3.3 RECURSIVE UPDATING - THE NEED FOR FEEDBACK

The multiobjective flood control operating algorithm is
formulated as a tradeoff between peak discharge reduction and
peak storage utilization in a two-stage programming problem.
This tradeoff captures the balance which must be struck between
the risk of flood damages and the risk of structural failure.
These conflicting risks result from the transformation of
stochastic precipitation and runoff forecasts into reservoir
releases. We use an open loop feedback algorithm, incorporating
real-time updating of the system throughout a storm event.
Ideally the entire reservoir system could be represented in
state space form, incorporating the dynamic equations governing
the stochastic state transitions to identify closed loop
operating decisions. Such solutions of the optimal control
problem would give the optimal release decision conditioned on
the current state of the system, and the current time step
within the flood event.

Two factors have made this desired result elusive. First,
for real-time operation of water resource systems the relevant -
components of the state vector may be too complex for the true
state dynamics to be known. For systems in which atmospheric
circulation and cloud physics determine the state dynamics, it
is doubtful that the physical laws which generate probabilistic
state transitions from stochastic inputs will ever be known
exactly. This fundamental uncertainty in the mechanics of state
evolution necessitates the recursive use of current
hydrometeorologic observations to update the current estimate of
the state vector, prior to solving for the current period’s
control decision. _

Second, as is frequently noted in real-time operating
problems, most of the true closed loop algorithms that have been
applied to water resource problems suffer from the exponential
growth in computational requirements, i.e. the "curse of
dimensionality”". A number of approximately optimal algorithms
have been derived from the elegant theory of linear systems with
guadratic criteria functions (LQ). LQ systems have the
appealing property that for gaussian or exponential inputs, the
optimal control decision (optimal in an expected value sense) in
each discrete time period can be determined analytically, using
first moment information. This analytic solution can be derived
because the state and control variables are assumed unbounded,
and continuously differentiable. For a reservoir in which
storage and release cannot normally be negative, and for which
reservoir capacity imposes a hard upper bound, this assumption
is not valid. These bounds can be incorporated if we are
willing to expand the computational complexity of the algorithm
to a search over Kuhn-Tucker points. Such a search will grow
exponentially with the number of bounds in each stage.

One computationally feasible approach employs an
approximation of the LQ system to get an approximately optimal
control decision when storage is not too close to its upper or
lower bound. These approximately optimal algorithms generate
the current period’s release or control decision using a
perturbation algorithm around a feasible nominal trajectory.
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While the optimal trajectory so derived will provide a nearly
optimal decision for the current period, as uncertainty in state
transitions accumulate the state of the system must be
re-estimated, and the operating algorithm re-solved. These
algorithms have extremely attractive computational
characteristics and have been demonstrated on sizable water
resource systems. Nevertheless, adaptive state estimation,
followed by a new solution iteration is common to all these
procedures.

7.3.4 GROWTH OF THE STATE VECTOR

A true real-time closed loop reservoir operating algorithm
would provide a unigque optimal control decision conditioned on
the system state and stage. 1In general no real-time
non-adaptive closed loop reservoir operating algorithm has been
proposed which adequately captures the state dynamics. One
major reason for this is the unavoidable complexity of the
hydrologic state vector. For example, a single watershed
represented with the Sacramento soil moisture accounting model
would have a bounded component of the state vector for each of
the six conceptual soil moisture zones. On the Potomac River
Basin the calibration of the National Weather Service River
Forecast System partitioned the basin into 23 separate
watersheds with a total of 138 conceptual storage zones. For
flood routing, the channel segments connecting the separate
watersheds further increase the dimensionality of the hydrologic
state vector. As the need for improved hydrologic resolution
increases in real-time operating problems, it is difficult to
avoid an exponential increase in the computational burden. The
dimensionality curse is very real indeed.

We note, however, that the growth in the state vector with
increasing complexity is largely restricted to that part of the
state vector representing the uncontrollable hydrologic system.
If we accept the need to recursively solve an approximately
optimal problem with feedback, we may consider algorithms that,
while clearly not closed loop, reduce the dimensionality of the
inherently imperfect representation of the hydrologic system.
Stedinger et al. (1984) showed that the choice of an informative
representation of the hydrologic state, was as important in
identifying efficient operating decisions as the choice of
algorithm used to compute the optimal control decision for the
system. The growth of the hydrologic state vector with
hydrologic complexity continues to make closed loop solutions
computationally unattractive. We approach this problem using an
approximation of the hydrologic system in an open loop
algorithm. Feedback is employed at each time step to limit the
error introduced in the simplified hydrologic state
representation.

We develop an open loop feedback algorithm in which
hydrologic observations are used to approximate future
transitions in the hydrologic state vector at each time step.
The two-stage recourse algorithm explicitly separates the
representation of the uncontrolled hydrologic state vector from
the optimal release for the controllable reservoir component of
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the reservoir system. Feedback from updated hydrometeorologic
observations is utilized (although the availability of these
future updates is not explicitly considered in the current
period’s operating problem) to keep this state approximation
accurate and specify current boundary conditions.

7.3.5 MULTIPLE OBJECTIVE TWO-STAGE RECOURSE WITH FEEDBACK

The two-stage recourse problem is a stochastic optimization
problem in which a decision must be made determining the
allocation of a finite resource of unknown amount. The
available resource is known only to a probability density
function and is represented by the random vector Q. An
allocation decision, x, must be made in the current period,
prior to observing the realization q, of the random process, Q.
After observing the realization g, a second stage decision, y,
is made to allocate the remaining resource. The optimization
problem is to find the optimal first stage decision variable, x*
that minimizes the expected value of the combined costs of the
first and second stage decisions. The two-stage recourse
problem is formulated as:

(2SR-1)

Min [ E Min (c'x + d'y) ]
X Q vy

Ax + By = Q

x,¥y, 20
where the coefficient matrices A and B embody the operative
system constraints, and Q is a random vector of known
probability density. In this problem feasibility requires :

y = B~1(q-2x)

The reservoir operating problem is a stochastic sequential
decision problem. We need to identify an "optimal" decision for
the current period that accounts for hydrologic uncertainty in
future periods. To consider this multi-stage problem as a two
stage decision problem requires the introduction of an
approximation of the probabilistic hydrologic state transitions.
This approximation maintains a forward looking property of '
closed loop algorithms in the open loop algorithm. We consider
the first stage decision as the release for the current time
period. The set of future releases in all subsequent time
periods is treated as the second stage decision vector. This
approximation is equivalent to assuming 1) the probability
density function of all future flow states is known, and 2)
after the current period’s decision has been made, the
particular realization of Q, is unambiguously observed.
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The two-stage representation of the multistage operating
problem produces the current period release that minimizes the
expected value of the objective function, as well as the set of
conditional release trajectories corresponding to the set of
optimal releases that would be made for the remainder of the
operating horizon after the true flood hydrographs were
revealed. Clearly all hydrologic uncertainty will not be
resolved in the next time period, after making the current
release. To correct for this approximation, a feedback step is
incorporated in the operating algorithm. After making the first
period decision the next realization of the hydrometeorologic
process (represented by q in problem 2SR-1) is observed. The
state of the reservoir is updated based on the newly observed
inflow and the release prescribed as the first stage decision
variable. Using the next observation of the hydrologic process,
a new two-stage problem is formulated using the updated level of
reservoir storage as a new boundary condition.

We formulate the two-stage operating problem by assuming a
forecast has been prepared from which the joint probability
density function of reservoir inflow I and uncontrolled
downstream runoff Q can be estimated. From this joint density
we can derive a number J, of discrete realizations of streamflow
as well as the probability of that joint realization. The joint
density is sampled to generate hydrograph realizations for the
basin {Qj5, I4} where

Q5 = {Q4,t,Qj,t+1r - - - Q5,7+ and

I3 = {Ij,tr Iy,t+1s - - - L,3,T}
are the hydrographs for the uncontrolled and controlled
watersheds under discrete realization j. The probability of

realization j is calculated from the estimated joint density
function as pj where

Pj = Pr{Q4,Ij | H(t,t-1,t-2,...t0)}

and H(t,t-1,t-2,...tg) denotes the current estimate of the
hydrologic state, using the observed history of the system to
date.

The two-stage operating problem is formulated as:

(2SR-2)
J T J T J T
Min w(g £ Pju§,t) + (1-w) & £ (Pjvy,t) + ez £ S§,t
j=1 t=1 j=1 t=1 j=1 t=1
s.t.
Sj,t+1 - S3,t - Ryt = Ije A
Qj,t + Mj,t = Fj,t 7.11
Mj,t - KRy, t - K'Mj,¢-1 = 0 7.12
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Sy,t+41 - 8,3, F 95t -9y, =0 7.13

Fjlt+1 B Fjlt + vjlt - vj/t =0 7.14
Sj,T =0 7.15
Rj,1-R1 = 0 7.16

Constraints 7.10 - 7.14 hold for j =1,2,...J, t =1,2,...T
where J is the number of hydrologic realizations considered and
T is the length of the operating horizon, and:

Sy, = volume in flood storage at the end of time t under
hydrologic future j

Rj,t - release from flood storage during time t under
hydrologic future j

Iy,t - inflow to flood storage during time t under
hydrologic future j

Q5,t - uncontrolled runoff at the downstream damage
center at time t under hydrologic future j
My, - Muskingum routing of reservoir releases

contributing to downstream damage at time t under
hydrologic future j

Fy,t - discharge at the downstream damage site at time t
under hydrologic future jJ

uj,t - changes in flood storage during time t under
hydrologic future j

Vi, t - changes in stage at the downstream damage site
during time t under hydrologic future j

Ry - flood control release for the current period

Pj - the probability of hydrologic future j under the
current forecast

e - an arbitrarily small constant

X,K’ - Muskingum channel routing constants

The objective function minimizes the expected value of the
cumulative rise in reservoir storage and the cumulative rise in
discharge at the downstream damage center. The third term in
the objective function is the cumulative volume of flood control
storage for all hydrologic futures. This term is included in
the objective function with an arbitrarily small weight. The
small weight on total storage is chosen to ensure this term will
not effect the cumulative rises in either storage or discharge.
Inclusion of the total storage term drives the solution toward
alternate optima with respect to storage and discharge in which
flood control storage is reduced from peak levels most rapidly.

Constraint 7.10 is the continuity equation which applies to
all hydrologic realizations, in all time periods. The discharge
at the downstream damage site is defined in 7.11 as the sum of
the current uncontrolled runoff plus the routed component of
reservoir releases. The routing in this formulation is defined
using a linear Muskingum channel in 7.12. It is clear from
constraints 7.10 - 7.12 that each hydrologic realization results
in the solution of a conditionally deterministic optimization
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problem as part of the second stage solution. Each conditional
solution provides a conditional peak discharge and peak storage
resulting from a conditionally optimal reservoir regulation.
Constraints 7.13 and 7.14 have been added to ensure the
operating plans for each hydrologic realization are plausible
from the reservoir operator’s perspective.

The two measures of operating performance in this
formulation are peak discharge and peak storage. A formulation
simpler than (2SR-2) could be developed in which constraints
7.13 and 7.14 are replaced by :

Sj,t - SMAXj <0 7.17
Fy,t - FMAXy < 0 7.18
and the first two terms in the objective function were simply
J J
PjSMAX4 and PjFMAX 4
j=1 j=1

The specification of maximum storage and discharge in terms
of the cumulative rises defined in 7.13 and 7.14 rather than
7.17 and 7.18 ensures the optimal operating increase in storage
and discharge will be monotone, and will not admit spurious
secondary peaks. Without constraints 7.13 and 7.14 and their
contributions to the objective function, optimal release
trajectories would allow erratic fluctuations in storage in
which inflow was alternately stored and released every few
hours.

Such an operating policy, though unacceptable to the
reservoir operator would be a feasible solution to problem
2SR-2. 1Indeed such a solution could be an alternate optima in a
formulation that minimized only SMAX; and FMAX:. The more
complex formulation of 2SR-2 avoids alternate dptima with
unrealistic release trajectories.

Constraint 7.16 imposes the two-stage structure on the
operating problem. This constraint requires each operating
trajectory for each hydrologic realization to utilize the
identical release for the current period. Regardless of the
hydrologic regime that is realized in later time periods, the
conditionally optimal operating trajectory for each of the
likely hydrologic realizations must begin with the identical
first period release - the current period’s release decision.
In this way we generate the current period’s release along with
the set of conditionally optimal future releases to be followed
for each possible hydrologic realization being considered.

Constraint 7.15 simply imposes an end of horizon boundary
condition on drawdown. In practice the total storage term in
the objective function will accelerate drawdown by driving
solutions toward alternate optima that satisfy constraint 7.15.

The two-stage formulation allows future optimal releases to
be part of the current release decision. 1In this way the
two-stage algorithm provides a current period release decision
{conditioned on the current level of flood storage and recent
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releases currently in the channel) that approximates the forward
looking property of closed loop solutions.

If the probabilistic evolution of the hydrologic system
could be known with certainty, the future joint inflows (Ij,Qj)
could be directly incorporated in the operating model. Our
imperfect understanding of the evolution of flood producing
storm systems limits our ability to completely describe future
state transitions. This limitation necessitates recursive
updating of the current estimate of the hydrologic state and the
operating forecast of flood conditions over the basin.

We emphasize that this limitation in prescribing the
hydrologic state dynamics is an inherent part of the real-time
flood operating problem and is in no way limited to the
two-stage algorithm presented here. Recursive estimation of the
hydrologic state using updated observations must arise in
real-time operating algorithms, where state dynamics are
imperfectly known.

The second significant difference between the two-stage
algorithm and a true closed loop algorithm is the implicit
inclusion of the reservoir-channel system in the state variable.
Current reservoir storage and channel contents are prescribed as
initial conditions for the two-stage formulation. 1In a true
closed loop solution the optimal policy would be conditioned on
the observed state variable including storage and channel
conditions explicitly. The implicit use of storage and channel
conditions requires the two-stage algorithm to be re-solved at
each time step with new boundary conditions. This requirement
is not restrictive. Given the need for recursive estimation of
the hydrologic state variable. A real-time operating algorithm
will have to recalculate the optimal solution for the current
estimate of the system state. The two-stage algorithm developed
here is no exception.

7.3.6 FIRST MOMENT NON-INFERIOR SOLUTIONS

In contrast to a single objective optimization problem that
provides the optimal release for the current period, the
multiobjective algorithm admits a set of release decisions, each
of which is non-inferior with respect to the conflicting
objectives considered. Reflecting the conflicting risks of
reservoir operation, the stochastic optimization problem is
formulated as a tradeoff of peak discharge and peak storage. 1In
formulation 2SR-2 these conflicting objectives appear in the
objective function with weights w and (l-w) respectively. Any
choice of weight w will allow the problem to be solved for a
non-inferior solution. The choice of weights can be used to
define the operator’s preferences if they can be unambiguously
elicited, Haimes(1974). The variation of weight w can also be
used to generate the non-inferior set Cohon (1978). Generating
the non-inferior set allows the decision maker to assess the
choice of operating decisions in both an absolute sense (e.g.
whether or not any alternative can avoid damaging stages) as
well as in comparison to other non-inferior choices.

Although each solution of problem 2SR-2 provides an estimate
of the joint distribution of storage and discharge, the
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multiobjective solutions are only non-inferior in terms of their
expected values. For this reason we refer to the solutions of
the stochastic multiobjective two-stage problem as first moment
non-inferior solutions. Using generating methods (Cohon 1978)
such as the NISE (non-inferior set estimation) technique (Cohon,
Church and Sheer 1978) the first moment non-inferior set may be
accurately estimated and presented to the reservoir operator in
the form of a trade off curve as in Figure 7.5. The first
moment non-inferior set gives the operator a graphical summary
of the feasible performance alternatives for the flood control
system under current forecast conditions. Each non-inferior
solution of the multiobjective two-stage recourse problem can be
represented by the expected values of peak storage and peak
discharge resulting from the proposed operating strategy.

Each first moment non-inferior solution also has a current
period reservoir release associated with it, as well as an
estimate of the joint density of storage and discharge that will
result from that particular strategic choice.

7.4 REAL-TIME FLOOD CONTROL OPERATION

In this section we apply the two-stage recourse formulation
to a representative single reservoir flood control problem. The
system as shown in Figure 7.6 consists of a 125 square mile
drainage basin upstream from an 8,000 acre-foot (AF) flood
control reservoir that can store 1.25 inches of runoff. A
damage center is located downstream from the reservoir. The
damage center is also influenced by a significant uncontrolled
drainage. Channel effects are significant between the reservoir
and the damage site and are represented using Muskingum
routing. Hydrographs for the two drainage areas are available
with concentration times, for this example of 6 hours.

7.4.1 THE FORECAST ENVIRONMENT

We assume forecast information is available for each time
period and without loss of generality we suppose meteorologic
radar images and precipitation gages are providing data both
within and beyond the boundaries of the watershed. Flood
control operation is most critical for storms producing runoff
volumes exceeding the annual flood. The large frontal systems
with which these storms are associated are generally observed
before they deliver precipitation to the basin. We assume
estimates of storm depth & storm structure are available prior
to the onset of runoff producing precipitation.

We simulate operation for the storm system by assuming a
forecast has been issued calling for 1 to 3 inches of rain
sometime during the next 12 hours. This "forecast" is a great
simplification of the prudent steps that the operator of a flood
control reservoir would take in monitoring the progress of a
storm system. This simple forecast was chosen to emphasize two
points. First, the operating algorithm uses a probabilistic
description of the current forecast that is separable from the
use of any particular forecasting technique. The current
estimate of the storm attributes can be developed from a large
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number of the existing, or developing forecast technologies.
Second, the assumption of a uniform distribution for both
precipitation depth and storm timing represents a case of near
maximum uncertainty. As observations on the storm system
accumulate, the estimates of depth and timing become more
accurate, converging to their true values. This convergence
will be expressed in a reduction in the variance of the
distributions and the emergence of a unimodal rather than a
uniform distribution of the random components of the forecast.
While the uniform distribution assumed here may represent too
poor a forecast, the operating algorithm nevertheless provides
operating alternatives for this highly uncertain environment.
In the face of significant uncertainty early in the storm the
two-stage recourse formulation provides non-inferior
alternatives that hedge against hydrologic uncertainty.

Forecasting tools are currently available that would provide
better forecast information to a reservoir operator than that
assumed here. As forecasting technology continues to improve so
to will the accuracy and timeliness of forecast products.
Improved forecasts (manifested in smaller variances about
unbiased predictions) will lead to more efficient utilization of
reservoir storage. Improved operation will allow incremental
reductions in flood crests, as well as alternate uses of flood
storage without an increase in flood risk. The stochastic
multiobjective operating algorithm is readily adapted to use a
wide variety of forecast products producing hedging releases in
real-time.

In each time period we generate J hydrologic realizations
{I,Q} and their associated probabilities of occurrence
P={p1,P2,.-. PJ}. The hydrograph pair varies in magnitude and
timing according to a current joint density resulting from some
forecast process.

Conceptually we imagine the availability of a sequence of
radar images, from which the velocity of the storm system is
estimated. Radar reflectivity and precipitation gages are used
to estimate precipitation intensity, and distribution within the
storm. Projecting likely storm trajectories provides a
distribution of coverage for each basin. Routing precipitation
forecasts through a calibrated hydrologic model provides likely
hydrographs for the basin, varying in both runoff volume timing
over the watersheds.

To demonstrate the algorithm we have assumed the depth of
precipitation is a uniformly distributed random variable.
Considering a significant frontal passage over our relatively
small basin we further assume that the depth of effective
precipitation over the two watersheds will be identical. We
allow random variation of the actual storm track by considering
the difference in the timing of precipitation over the two
basins as a random variable. This admits an uncertain situation
in which not only the depth of precipitation (and hence volume
of runoff), but also the relative timing of runoff is uncertain.
The operating decisions will account for both sources of
uncertainty
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Each realization of precipitation depth is distributed
temporally with the dimensionless hyetograph depicted in Figure
7.7. While estimates of the structure and development of the
storm can be made (Johnson and Bras 1979) the distribution of
precipitation will in general be known only to an estimated
probability density. The estimated stochastic structure of the
hyetograph would also be a random variable for which discrete
realizations would be required to further specify the set of
probabilistic flood hydrographs for the basin.

In this example the hyetograph is assumed known and the only
sources of uncertainty are in the depth of precipitation and the
relative timing of runoff over the two basins. For illustration
we represent the current forecast as a precipitation depth that
is uniformly distributed between 1 and 3 inches and a difference
in the time of peak runoff between the two basins uniformly
distributed between -6 and 6 hours. In other words the peak
runoff into the reservoir may arrive as early as 6 hours before
the downstream peak, or as late as 6 hours after that peak (i.e.
a range of twice the concentration time for the two basins).

Using this probabilistic forecast, we simulate flood control
operation by using the probabilistic forecast to generate likely
runoff events. The uniform distributions assumed for both
precipitation depth and the time lag between precipitation over
the two basins, represents a forecast with relatively low
information content. The initial uncertainty is increased by
assuming the depth and timing distributions for the storm are
uncorrelated. Knowledge of depth of precipitation gives no
skill in estimating the relative precipitation timing over the
two basins.

For these very general assumptions, the distributions for
depth and timing of precipitation are independently sampled and
combined to produce 25 equally likely synthetic storms. The
storm totals are distributed with the dimensionless hyetograph
of Figure 7.7. Using the time lags for each depth and the
dimensionless hyetograph, a set of 25 equally likely flood
hydrographs are generated using the calibrated unit hydrographs
for the two watersheds. 1In this way a set of flood hydrographs
are generated that are consistent with the current forecast.

7.4.2 THE CURRENT RELEASE

Evaluating the operating risks represented in this set of
likely hydrologic conditions, the operator must decide the
degree and type of risk he is willing to accept, and translate
this risk preference into an operating decision for the current
period.

To assist in this decision, we solve the stochastic
multiobjective operating problem to present the operator with a
description of the efficient probabilistic choices available to
him at the current time. One solution that is always available
is to open the flood gates and release all inflow. While no
storage would be used, the expected value of the downstream
flood peak based on current forecast information would be 55,000
¢cfs. Solution of the multiobjective operating problem generates
thé tradeoff curve in Figure 7.8. The most aggressive regulation
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of the flood could reduce the expected value of the downstream
peak discharge to 26,600 cfs with an expected peak utilization
of 55,752 cfs-hrs of storage. If reservoir storage is used less
aggressively (e.g. to hedge against the possibility of a second
storm) the downstream flood peak is likely to be increased. The
extreme point shown in Figure 7.8 reduces the expected flood
peak to 36,947 cfs, but the expected storage required for this
operation is only 7,869 cfs-hrs.

Associated with each first-moment non-inferior solution is a
reservoir release for the current period. Figure 7.9. shows the
current period release to be made in order to achieve the
expected value result of each non-inferior point on the trade
off curve. The curious result shown in Figure 7.9. indicates
that the optimal release in the current period is 100 cfs
regardless of the strategic operating targets for discharge and
storage utilization favored by the operator. Even though a wide
range of operating alternatives are feasible based on the
current flood forecast, in the current time period no action is
required. Although the operator will have to choose operating
targets from the set of risky alternatives depicted in Figure
7.9, there is no need to hedge against forecast uncertainty in
making the current period’s operating decision. The current
operating problem is not dominated by the need to hedge against
hydrologic uncertainty. The opportunity to evaluate the risky
alternatives that are feasible before a hedging decision must be
made is viewed as a particularly useful feature of the proposed
algorithm.

In addition to the expected value of storage and discharge,
each non-inferior solution provides information about the
probability distribution of storage and discharge. For example,
in Figure 7.10 the probability of completely filling reservoir
storage is shown for each non-inferior solution. If the
reservoir operator was willing to use 10,000 cfs-hrs less
storage, resulting in an increase in the expected flood peak
from 26,000 to 28,000 cfs, the probability of filling the
reservoir could be reduced from .64 to .28. The operator may be
willing to accept an 8% increase in the expected flood peak in
order to provide a dependable reserve of storage during the
flood event.

7.4.3 THE OPERATING RISKS

Filling flood storage represents a very real risk the
operator may wish to avoid. The probability of completely
filling storage is, however, an insufficient measure of this
risk. An operating plan that expects to use 99.9% of available
flood storage will appear just as risky to a reservoir operator
as a plan using 98% or 100%. The probability of crossing any
one storage level may be a poor description of risk. To
illustrate this point Figures 7.11 and 7.12 present the
estimated joint probability density of storage and discharge for
the two non-inferior solutions for which the probabilities of
filling storage are .64 and .28 respectively. It is clear from
the probability contours how much more likely the flood pool is
to fill if operations follow the first non-inferior solution.
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Comparing the two density surfaces, it is also clear that
reservoir operation exerts a great deal of control over the
mapping of hydrologic inputs into storage-discharge space. In
expressing a preference for an arbitrary probability of using a
prespecified volume of storage, the operator implicitly assumes
the location of a particular quantile of the storage
distribution contains information about the shape of the tail of
that distribution. For a water resource system in which
operating decisions can dramatically shape the distribution of
system outputs, the location of a single quantile of the
distribution is an insufficient descriptor of the tail of the
distribution.

For the multiobjective flood control algorithm presented
here, the complete joint probability density function of system
outputs contain important information describing the feasible
operating alternatives. Attempts to reduce this distribution to
a single metric such as the mean, or an arbitrary quantile will
not accurately convey the risks associated with a strategic
choice. This observation has significant implications for
stochastic operations of water resource systems using chance
constraints or expected value formulations.

The "solution" of a stochastic optimization problem is
really a choice of the optimal transformation of stochastic
inputs to a probability density of returns. When the inputs can
be described with a known parametric probability density
function, and the resulting distribution of outputs is a smooth,
well defined transformation of system inputs, a simple location
parameter such as a mean or an arbitrary quantile is sufficient
to completely specify the distribution of returns. In this
situation, an expected value solution or a chance constrained
solution are equivalent in choosing the optimal distribution of
returns.

As the mapping of stochastic inputs to expected returns
becomes more complex, the unique specification of the
distribution of returns becomes increasingly difficult. Neither
an expected value optimization, nor the specification of a
single quantile through, for example, a chance constraint, are
sufficient. Figures 7.11 and 7.12 show, the asymmetrical,
multimodal mapping of the uniformly distributed precipitation
forecast into the joint distribution of storage and discharge.

The flood release decisions clearly have a profound and
dramatic effect on the shape of the distribution function of
outputs. If a constraint were added restricting the probability
of filling flood control storage, many solutions would be
generated in which the difference between peak storage and
reservoir capacity could be made arbitrarily small. The
constraint would be satisfied but the reliability of the system
would not be significantly improved.

Chance constraints or expected value objective functions
alone, implicitly attempt to choose the optimal distribution of
outputs by locating a single quantile of the pdf of returns.

For systems which exert great control over the distribution of
outputs, the location of a single quantile of the output
distribution contains little information. We suggest that the
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nature of many structural solutions to water resource problems
is to provide the means to fundamentally alter the distribution
of system outputs. Operating decisions that effectively choose
the pdf of system benefits should be based on the most complete
representation of the distribution of system returns possible.
For water resource problems utilizing significant structural
means of flow modification, decisions based only on the location
of a single guantile may provide an inaccurate description of
the risks an operating decision creates.

The complete description of the available operating
alternatives includes not only the current trade off curve with
release decisions for each first moment non-inferior solution,
but also the joint pdf of storage and discharge for each
alternative. This description of the risky alternatives
available at each decision point is superior to any single
metric or univariate reduction of the mapping into objective
space.

7.4.4 OPERATING THROUGH A STORM

With this background we simulate reservoir operation through
the entire flood event. Operation consists of the generation of
the non-inferior set at each time period, along with the optimal
release and joint distribution of storage and discharge for each
non-inferior solution. The reservoir operator uses this
information to choose a strategy for managing the current flood,
where the strategy refers to the preferences of risks implicit
in identifying one non-inferior solution as most desirable.

From this strategic choice, the current period release
represents the tactical means to achieve this objective.

We simulate the routing of the flood in Figure 7.13 by
assuming the reservoir operator always chooses the non-inferior
solution that minimizes the downstream discharge. The trade-off
curve in Figure 7.11 shows the first moment non-inferior set
generated at time t=21. 1Initially the full 65,000 cfs-hrs of
flood storage is available, and the steady inflow of 100 cfs is
being completely released.

The uncontrolled inflow hydrograph along with the stochastic
multiobjective release pattern for the reservoir is shown in
Figure 7.14. The maximum release shown was 20775 cfs compared
to the maximum inflow of 28532 cfs. The main feature of the
regulation in Figure 7.14 is a delay in the peak controlled
runoff of approximately 6 hours. Despite the uncertainty in
each operating decision the recourse formulation with feedback
offers a plausible means to use forecast information to identify
real-time operating decisions for flood control operation.

The maximum volume of water in storage was 50,921 cfs-hrs,
although inflow is stored for a total of 10 hours. Storage from
hour 25 through 28 reflects hedging against the possibility of a
low flood peak or early downstream crest. Storage from hour
30-32 is mainly hedging against continuing flood inflow and a
late downstream flood crest. Although the non-inferior solution
always sought to minimize the expected flood peak, the full
65,000 cfs-hrs of storage was not used. This is attributable to
the uncertainty of the forecasts used.
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Even after the runoff peak at time 29, the forecasts still
allowed for the possibility of a higher peak due to added
precipitation (with low probability). The unused storage was
reserved for this unlikely event. The algorithm again hedged
against this uncertainty.

Hedging, both early and late in the storm event, has a
significant storage cost which must be reflected in downstream
discharge. Although hedging is suboptimal a posteriori, the
need to hedge was imposed by the uncertainty of the runoff
forecast. We assume flood forecasters will become increasingly
confident in their runoff estimates through a storm. As this
reduced uncertainty is used in the operating algorithm, release
decisions will use storage more aggressively. In the face of
considerable uncertainty, releases must be hedged. The
Multiobjective two-stage algorithm provides hedging releases
along with a full description of the resulting operating risks
in each time period.

7.5 SUMMARY

Flood control operation of reservoirs provides benefits by
storing damaging flows until conditions allow a safe controlled
release of storm runoff. Release decisions that store runoff
represent risky commitments of limited reservoir storage. The
use of real-time forecast information can provide improved
damage protection and risk reduction in real-time flood control
operation.

Real-time flood control operation can be viewed as a
stochastic sequential decision problem in which the finite
volume of reservoir storage is sequentially allocated over time
to maximize flood protection benefits. The risks associated
with flood damage reduction require the reservoir operator to
hedge release decisions against hydrologic uncertainty. Damage
minimization leads to the full utilization of reservoir storage.
Filling the flood pool imposes additional risks from
unanticipated inflow as well as the possibility of overtopping
the dam, leading to structural failure.

The choice between conflicting risks in making flood control
release decisions is formulated as a multiobjective optimization
problem. The operating choices at each decision point can be
represented as a tradeoff of maximum reduction in flood
discharge and maximum use of flood storage. Instead of
identifying a single flood control release, the operator can
choose from a set of non-inferior releases representing the
range of risky alternatives that are available.

The stochastic sequential nature of real-time operation is
represented as a two-stage recourse problem. Real-time forecast
information is used to describe the current risks from
hydrologic uncertainty. The two-stage problem seeks the release
decision for the current period that maximizes the total
expected benefits over the operating horizon. The two-stage
recourse algorithm uses current forecast information to
approximate the hydrologic state of the system in each time
period. Recursive approximation of system hydrology using

-168-



forecast information offers an alternative to the exponential
growth in problem size associated with full state-space
representations of complex hydrologic systems.

The combination of stochastic optimization and
multiobjective programming is a unique feature of this work. At
each decision point the reservoir operator is presented with a
set of probabilistic operating alternatives that are
non-inferior with respect to their first moments. Stochastic
real-time operation is viewed as a controllable mapping of
stochastic hydrologic inputs into a joint probability density
function of system outputs. Each first moment non-inferior
solution prescribes a current period release and a conditional
estimate of the resulting joint density function of benefits.

The reservoir operator chooses a distribution of benefits,
by choosing the current period’s release decision. The
stochastic multiple objective two-stage algorithm developed here
provides the operator with both the first moment non-inferior
set of feasible releases as well as the estimated joint density
function of system benefits resulting from each release. The
use of quantile locating criteria such as chance constraints or
expected value optimization is shown to provide an insufficient
description of the risks associated with alternate operating
decisions.

An operating simulation is used to demonstrate the operation
of the multiple objective two-stage recourse feedback algorithm.
The combined information in the first moment non-inferior set
and the estimated joint density of system outputs provides
superior criteria for choosing between the risky operating
decisions available through a flood event.
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FIGURE 7.1
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FIGURE 7.2
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FIGURE 7.3
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FIGURE 7.4
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FIGURE 7.5
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Figure 7.6
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FIGURE 7.7
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FIGURE 7.8
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FIGURE 7.9
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FIGURE 7.10
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FIGURE 7.1i1
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FIGURE 7.12
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FIGURE 7.13
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FIGURE 7.14
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FIGURE 7.15
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