Water Availability in the Upper Monocacy Basin – Existing Estimates from Water Budget and Ground Water Modeling Studies

September 30, 2008

Cherie L. Schultz, Ph.D
James B. Palmer
Interstate Commission on the Potomac River Basin (ICPRB)
Location of Upper Monocacy Basin

Legend
- Blue: Potomac River
- Light blue: Potomac tributaries
- Gray: State boundaries
- Green: Monocacy River Basin
- Yellow: Upper Monocacy Basin
- Gray: Adams County
Water Availability: Considerations

- Spatial scale
- Interconnection between ground water and surface water resources
- Seasonal variations in water availability
- Importance of data
Water Availability Estimates from ICPRB

- Annual recharge estimates for the Monocacy River basin by hydrogeomorphic region
- Seasonal water availability estimates in 4 watersheds of the Monocacy basin using stream flow recession analyses
- Ground water/stream flow model of upper Monocacy basin, estimating of impact of ground water withdrawals on stream flow
Annual Recharge Estimates

- For Monocacy/Catoctin drainage area
- Uses annual baseflow statistics:
 annual recharge ~ annual stream base flow
- Data from 34 stream gages
- Spatial regression analysis, with explanatory variables:
 - Drainage area
 - % watershed in each of 4 hydrogeomorphic regions
 (Chesapeake Bay Program)

See Annual and Seasonal Water Budgets for the Monocacy/Catoctin Drainage Area, ICPRB, 2004
Annual Recharge Estimates

<table>
<thead>
<tr>
<th>Hydrogeomorphic Regions (CBP)</th>
<th>2-year</th>
<th>10-year</th>
<th>20-year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue Ridge (BR)</td>
<td>12.2</td>
<td>7.8</td>
<td>6.8</td>
</tr>
<tr>
<td>Mesozoic Lowland (ML)</td>
<td>5.3</td>
<td>2.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Piedmont Carbonate (PCA)</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Piedmont Crystalline (PCR)</td>
<td>8.5</td>
<td>5.8</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Legend

- **Blue Ridge (BR)**
- **Mesozoic Lowland (ML)**
- **Piedmont Carbonate (PCA)**
- **Piedmont Crystalline (PCR)**
Seasonal Water Availability Estimates

- For 4 Monocacy/Catoctin watersheds
- Study period: 1960 - 2002
- Analyses based on:
 - Mean seasonal baseflow
 - Baseflow recession coefficients
- Results include time series of seasonal estimates for:
 - Base flow (BF)
 - Storm flow (SF)
 - Evapotranspiration (ET)
 - Net recharge (R)
 - Storage (S) (above zero-flow level)
Seasonal Water Availability Estimates

Long-term averages of estimated seasonal water budget components, Marsh/Rock/Alloway Creek watershed (inches per quarter)

<table>
<thead>
<tr>
<th></th>
<th>Precip</th>
<th>SF</th>
<th>BF</th>
<th>ET</th>
<th>R</th>
<th>ΔS</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1 (J,F,M)</td>
<td>10</td>
<td>4.5</td>
<td>2.9</td>
<td>2.3</td>
<td>3.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Q2 (A,M,J)</td>
<td>12</td>
<td>2.5</td>
<td>1.7</td>
<td>8.2</td>
<td>1.3</td>
<td>-0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Q3 (J,A,S)</td>
<td>11.5</td>
<td>1</td>
<td>0.4</td>
<td>10.1</td>
<td>0.4</td>
<td>0</td>
<td>0.1</td>
</tr>
<tr>
<td>Q4 (O,N,D)</td>
<td>9.9</td>
<td>2.2</td>
<td>1.2</td>
<td>6.2</td>
<td>1.5</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Annual</td>
<td>43.4</td>
<td>10.3</td>
<td>6.2</td>
<td>26.8</td>
<td>6.3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

From *Annual and Seasonal Water Budgets for the Monocacy/Catoctin Drainage Area*, ICPRB, 2004
Seasonal Water Availability Estimates

Annual water budget
- Based on estimates of annual recharge
- Assumes no annual change in storage

Seasonal water budget
- Based on estimates of recharge and recession
- Estimates seasonal changes in storage

<table>
<thead>
<tr>
<th>Station</th>
<th>Annual Recharge (gpd/acre)</th>
<th>Seasonal Summer recharge + summer storage (gpd/acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>1 in 10-year</td>
</tr>
<tr>
<td>Catoctin Creek (01637500)</td>
<td>350</td>
<td>210</td>
</tr>
<tr>
<td>Upper Monocacy (01639000)</td>
<td>230</td>
<td>120</td>
</tr>
<tr>
<td>Big Pipe Creek (01639500)</td>
<td>350</td>
<td>460</td>
</tr>
<tr>
<td>Bennett Creek (01643500)</td>
<td>390</td>
<td>420</td>
</tr>
</tbody>
</table>
Upper Monocacy Basin Ground Water/Stream Flow Model

- **Objective**: investigate impact of ground water withdrawals on summertime stream flow
- **Scale**: regional (309 mi2)
- **Study period**: 1960 to 2002
- **Funding**: National Fish and Wildlife Foundation/ICPRB
Available Stream Flow Data

- Daily flow data:
 - Monocacy R at Bridgeport, MD
 - Piney Cr near Taneytown, MD
 - Toms Cr at Emmitsburg, MD

- Six flow measurements made for project on Marsh Cr & Rock Cr (USGS)
Available Well Data

- Data at 361 wells in 43-year study period
- 59% of wells had only 1 measurement
- 92% of wells had 3 or less measurements
Classification of Summertime Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Summertimes</th>
<th>Mean summertime baseflow at 01639000 (cfs)</th>
</tr>
</thead>
</table>
Classification of Summertime Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Summertimes</th>
<th>Mean summertime baseflow at 01639000 (cfs)</th>
</tr>
</thead>
</table>
Classification of Summertime Conditions

<table>
<thead>
<tr>
<th>Condition</th>
<th>Summertimes</th>
<th>Mean summertime baseflow at 01639000 (cfs)</th>
</tr>
</thead>
</table>
Available summertime well data by hydrologic condition

Summer well data
- Red: Dry
- Orange: Average-dry
- Yellow: Average
- Green: Average-wet
- Light blue: Wet
Model Grid

- 500 m x 500 m horizontal grid cells
- 10 layers each 10 m
- 271 stream miles
Hydraulic Conductivity Zones

Rock type:
- Blue Ridge crystalline
- Mesozoic Lowland sedimentary
- Mesozoic Lowland diabase
- Piedmont crystalline
Model recharge inputs represent “net” recharge - include impact of ground water withdrawals

Recharge inputs based on means summer baseflow, by hydrologic condition.
Model Aquifer Level Predictions - Calibration

Average Summer

Simulated (m)

Observed (m)
Model Aquifer Level Predictions - Verification

Dry Summer

![Dry Summer Regression Plot]

Average-Dry Summer

![Average-Dry Summer Regression Plot]
Model Aquifer Level Predictions - Verification

![Graphs showing observed vs simulated aquifer levels for average-wet and wet summer conditions.](image-url)
Model Predictions of Dry & Losing Stream Reaches

Legend
- % Dry stream miles
- % Dry or losing stream miles

Simulated flow at 01639000, mgd

Upper Monocacy Basin
Model stream flow predictions
- Gaining stream reach
- Losing stream reach
- Dry stream reach
- Other grid cell
Upper Monocacy Ground Water/Stream Flow Model – Conclusions

- Model limitations:
 - Regional model, so predictions not likely reliable at local scale
 - Ground water withdrawals simulated as uniform reduction in net recharge
 - Needs further verification – with stream observations

- Model capabilities:
 - Fairly good simulation of typical summertime aquifer levels
 - Indicates that additional ground water withdrawals of ~ several mgd will likely have significant impact on basin streams