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Purpose and Background 
 

The Patuxent and Occoquan reservoirs in the Washington Metropolitan Area (WMA) are 

operated to meet a specific target: that they reach 90 percent full by June 1 of each year at 

a 95 percent reliability (i.e., 95 percent of the time), per agreement by the Water Supply 

Coordination Agreement of 1982 (WSCA, 1982).  The tool discussed in this paper 

represents an improvement in the method by which water managers can calculate 

appropriate reservoir withdrawal levels while meeting this reliability standard. 

 

In the late 1990s, ICPRB CO-OP developed an interactive graphical tool to help reservoir 

operators craft sustainable withdrawal strategies that met this reliability standard.  This 

tool was based on conservative estimates of historical  reservoir inflows.  Specifically, 

the 5
th
 percentile flow of the historical record for each month between the current time 

and the following May were strung together and used as the benchmark series of inflows.  

This series of flows represented a highly conservative approximation of the 5% 

probability event and, therefore, a safe benchmark for operations.  In the early 2000s, this 

tool was augmented with an interactive spreadsheet visualization tool that used position 

analysis.  Position analysis is a simulation of reservoir storage given the historical record 

of streamflows and conducted with an assumed starting storage and various assumptions 

about reservoir withdrawal rates.  This method is similar to work done by Hirsch (1978). 

    

Use of the historical record alone depends on a limited, and specific, hydrologic 

sequence, and may not provide a sufficiently comprehensive dataset for the analysis.  Use 

of the historical record in a position analysis further includes the assumption that all 

flows in the historical record are equally likely at any given time.  Most hydrologic 

processes exhibit significant autocorrelations, so recent conditions can provide valuable 

information as to potential future conditions.  An alternative to the historical record is the 

use of auto-regressive integrated moving average (ARIMA) modeling.  (See Box et al, 

1994 for details on ARIMA modeling.)  Streamflow prediction using ARIMA modeling 

incorporates autocorrelation combined with information about current conditions to 

develop flow prediction estimates, thereby providing a forecast conditioned on current 

hydrology.  ARIMA modeling provides the backbone of the spreadsheet tools introduced 

in this paper.  These tools incorporate the latest flow information, develop conditional 

forecasts of inflow to the reservoir, and allow water managers to develop a reservoir 

withdrawal strategy that also meets the regional reliability standard.  These tools are easy 

to use and incorporate improvements to the interactive graphical interface.   

 

The model methods and development are discussed using the Patuxent system as an 

example.  The data and results specific to the Occoquan system are presented at the end 

of this paper. 



Methods 

Data 

A dataset of Patuxent Reservoir inflows was developed by ICPRB for the 2005 water 

supply reliability study (Kame’enui, 2005) using methods developed several years earlier 

(Hagen et al., 1998).  The model used for the reliability study included data from 1929 

through 2002 (the period of simulation in the model).  For the work reported here, the 

dataset was extended to cover 1914-2003 using the same methods of the 1998 ICPRB 

report.  The data are based on different USGS gages for different parts of the record.  The 

raw data were adjusted to account for the location, associated drainage area, and other 

characteristics of those gages.  In addition to extending the record and making the 

necessary adjustments, the data were aggregated into monthly totals for this study.  

Figure 1 shows the hydrograph and some basic statistics of the Patuxent Reservoir 

inflows used for this study. 

 

It should also be noted that the two Patuxent River Reservoirs are treated as one 

reservoir.  The two are in series on the river, separated by only 3 to 4 hours travel time, 

and are functionally operated as one storage unit.   

 

Figure 1: Hydrograph and basic stats for Monthly Patuxent Reservoir Inflows 
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Initial Data Analysis 

The first step in developing an ARIMA model for the Patuxent inflows was to examine 

the basic structure of the distribution of flows.  Most hydrologic datasets are highly 

skewed and this is the case for the Patuxent inflows (see Figure 2).  Most ARIMA 

methods require the data to be approximately normally distributed, so the Patuxent data 



were log-transformed.  The transformed dataset is approximately normally distributed 

(see Figure 3) though it does not pass the Kolmogorov-Smirnov goodness-of-fit test 

(Salas et al, 1980).  The distribution of the log-transformed data was assumed to be close 

enough to normal for purposes of this analysis.  

 

Once the data have been sufficiently normalized, seasonal patterns must be examined.  

The Patuxent inflows show a strong seasonal pattern, as demonstrated in graphs of the 

monthly statistics (figure 4).   Seasonal patterns can dominate the ARIMA analysis, so 

the data must be made stationary (i.e., must be transformed so each month can be 

described with the same distribution).  This was done by converting the data to unit 

normal data according to the following equation: 

 

 
 where  Y(t) = Log-transformed flow in timestep t 

  τ = month of the year (1 through 12) 

  ǔ(τ) = monthly mean of the log-transformed inflows for month τ 

š(τ) = monthly standard deviation of log-transformed inflow for month τ. 

 

The above conversion results in an approximately normally distributed dataset (Z[t]) with 

mean zero and standard deviation equal to one (i.e., a dataset with a unit normal 

distribution).  This Z(t) time series was used for building the ARIMA model. 

 

Figure 2: Histogram of Monthly Patuxent Inflows 
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Y(t) – ŭ(τ) 
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Figure 3: Histogram of Log-transformed Patuxent Inflows 

Histogram of Log-Transformed Patuxent Inflows
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Figure 4: Monthly statistics 

Standard Deviation of Log-transformed Inflows,
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Log-transformation and the factoring out of seasonal patterns results in a stationary and 

approximately normally distributed time series.  Autocorrelations in this transformed and 

normalized time series can be modeled by an ARIMA process.  The autocorrelation and 

partial autocorrelation functions (ACF and PACF, respectively) of this time series can 

suggest the type of ARIMA model that should be used (Salas et al, 1980).  Figure 5 

shows the ACF and Figure 6 shows the PACF of the Z(t) time series. 
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Figure 5: ACF of Z(t) 

 
Figure 6: PACF of Z(t) 
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lines).  The PACF shows a significant partial autocorrelation for lags 1 and 2, while all 

others are insignificant.  The ACF and PACF can be used to guide the search for an 

adequate model.  Following recommendations in the literature (e.g., Box et al, 1994), the 

ACF and PACF for Z(t) point to an ARIMA model with 2 autoregressive terms and no 

moving average component (i.e., ARIMA (2,0,0)
1
. However, ACF and PACF merely 

suggest a place to start and it is always good to calibrate and compare several models.  

Therefore, several models similar to ARIMA(2,0,0) are included in the analysis below.   

Several models, including the ARIMA(2,0,0) model, were calibrated and tested in order 

to find the form bested suited for Patuxent reservoir operations.  Several standard tests 

were used to compare the models and eventually select one for implementation.  The 

models tested are listed below, along with the tests used to compare them.  Details on the 

characteristics of these models and the listed tests can be found in Box et al (1994) and 

Salas et al (1980). 

 

Models Tested 

 

• ARIMA(1,0,0) 

• ARIMA(2,0,0) 

• ARIMA(3,0,0) 

• ARIMA(1,0,1) 

• ARIMA(2,0,1) 

• ARIMA(3,0,1) 

• ARIMA(2,0,2) 

 

Comparison Tests 

• Akaike Information Criterion (AIC) 

• Porte Manteau lack of fit test 

• Root mean square error of forecasts of differing time horizons 

• Comparison of mean and standard deviation between recorded dataset and 

stochastically generated datasets

                                                 
1
 (The standard notation used with ARIMA modeling is as follows:  the first term indicates the number of 

autoregressive terms, the second, whether there is differencing used, and the third whether there is a 

moving average component.  For this series, the need for differencing was eliminated through the 

standardization process described above.) 

 



Model Calibration 

 

The general form for an ARIMA model is shown below. 

 
 where  Z(t) is the transformed, standardized flow at time t 

  Z(t-p) are values of Z(t) lagged p time steps 

  φp are the autoregressive coefficients 

  ε(t) are the error or residual terms 

  θq are the moving average coefficients 

  ε(t-q) error terms lagged p timesteps 

 

The statistical software package S-Plus was used to compute the parameters for each of 

the models listed above.  Output from S-Plus includes values for the model parameters, 

the AIC for each model and the model residuals.  Table 1 shows the parameters and AIC 

for each of the models listed above. 

 

Table 1: Coefficients and AIC for Several Potential ARIMA models 

Model φ1 φ2 φ3 θ1 θ2 AIC 

ARIMA(1,0,0) .62552 n/a n/a n/a n/a 2521.42 

ARIMA(2,0,0) 0.51405 0.17961 n/a n/a n/a 2485.84 

ARIMA(3,0,0) 0.50537 0.15356 0.0508 n/a n/a 2483.64 

ARIMA(1,0,1) 0.81674 n/a n/a 0.32903 n/a 2482.13 

ARIMA(2,0,1) 1.04659 -0.15928 n/a 0.54872 n/a 2479.45 

ARIMA(3,0,1) 1.12258 -0.1785 0.036 0.62765 n/a 2478.96 

ARIMA(2,0,2) 1.15983 -0.25461 n/a 0.66235 -0.04407 2481.28 

 

So, for example, the ARIMA(2,0,1) model is 

 
Based on the AIC it appears that ARIMA(3,0,1) is the best model (the lower the AIC the 

better).  However, there are only small differences between the AIC values for most of 

the models.  The ARIMA(1,0,0) is clearly inferior to the others based on the AIC.  In 

addition, the ARIMA(2,0,2) has a higher AIC than the ARIMA(2,0,1) so the additional 

moving average term does not capture additional information.  Therefore, the 

ARIMA(2,0,2) model is eliminated from further consideration. 

Testing Model Adequacy 

 

The Porte-Manteau test was applied to all of these models.  The Porte-Manteau test 

involves calculating the “Q statistic,” which is a function of the autocorrelation of the 

residuals (or error terms) of the model.  If there is a substantial autocorrelation in the 

residuals of a model, then the model is deemed inadequate because there is more 

Z(t) =  1.04659 * Z(t-1) – 0.15928 * Z(t-2) + ε(t)  –  0.54872 * ε(t-1). 

Z(t) = Σ φp Z(t-p) + ε(t)  –  Σ θq ε(t-q) 
p q 



information that could potentially be captured by a higher order model.  If there is no 

autocorrelation in the residuals, then the residuals represent a random, so-called white 

noise process containing no additional information and the model is deemed adequate.  If 

the residuals are truly white noise, then the Q statistic can be described by a chi-squared 

distribution (Salas et al, 1980).  Therefore, this test uses the chi-squared distribution with 

L-p-q degrees of freedom, where L is the maximum lag considered for the residual 

autocorrelations, p is the autoregressive order of the model, and q is the moving average 

order of the model.  If Q is greater than the p=.05 critical value from the chi-squared 

distribution, then there is less than a 5% chance that we would obtain the observed Q if 

the residuals were actually white noise.   This is the standard threshold for 

accepting/rejecting the adequacy of the model—if there is less than a 5% chance of 

obtaining the observed Q from an actual white noise process, then there is too much 

autocorrelation left in the residuals and a higher order model should be used.  If Q is less 

than the p=.05 chi-squared critical value, then the model is deemed adequate. Table 2 

summarizes the Porte-Manteau results for several models.  

 

Table 2: Porte-Manteau results for several ARIMA models 

Model Q Statistic Chi-squared Critical Value Pass/Fail  

ARIMA(1,0,0) 50.66 16.92 Fail 

ARIMA(2,0,0) 14.54 15.51 Pass 

ARIMA(3,0,0) 13.11 14.07 Pass 

ARIMA(1,0,1) 10.14 15.51 Pass 

ARIMA(2,0,1) 6.84 14.07 Pass 

ARIMA(3,0,1) 5.50 12.59 Pass 

 

The ARIMA(1,0,0) model fails the Porte-Manteau test, so it is eliminated from further 

evaluation.  The other models pass this test, with the higher order models showing better 

results. 

Testing Model Accuracy 

The simplest way to test model accuracy is to compare the statistics from synthetic 

datasets generated using the ARIMA models and the statistics from the calibration 

sample of the historical recorded dataset.  When used stochastically to generate synthetic 

flow data, ARIMA models should recreate basic statistics like the mean and standard 

deviation.  Table 3 shows the results of this comparison for the four remaining models. 

 

Table 3: Statistics for synthetic datasets (x years of data) vs historical data 

Model Mean flow % difference 
St Dev 
Flow % difference 

Recorded Dataset (1914-2003) 2804.32 n/a 2044.40 n/a 

ARIMA(2,0,0) 2760.3 -1.57% 1919.3 -6.12% 

ARIMA(1,0,1) 2777.8 -0.95% 1963.7 -3.95% 

ARIMA(2,0,1) 2857.9 1.91% 1992.8 -2.52% 

ARIMA(3,0,1) 2776.2 -1.00% 1942.1 -5.00% 

 



The mean and standard deviation for each model are within 5% of the values from the 

historical record, with the exception of the standard deviation for the ARIMA(2,0,0) 

model, which is 6.12% less than the historical standard deviation.  Each of these models 

reproduce the historical statistics acceptably well. 

 

In addition to summary statistics such as the overall mean and standard deviation, it is 

useful to compare the seasonal patterns of the generated data with that of the recorded 

dataset.  Figures 7 and 8 show charts of monthly means and standard deviations for the 

ARIMA models and the recorded dataset.  Figures 9 and 10 show errors in the monthly 

statistics for the ARIMA models as compared to the monthly statistics from the recorded 

dataset. 

 

Figures 7 and 9 show that each of the models reproduce the seasonal mean flows of the 

historic data set quite well.  The ARIMA(2,0,0) model tends to underestimate flows, 

while the ARIMA(2,0,1) model tends to overestimate flows.  The other models are more 

mixed between overestimating and underestimating monthly means.  The errors are quite 

small, however.   

 

The results for the seasonal standard deviations are mixed. Each of the models tends to 

underestimate the standard deviations in most months.  The ARIMA(2,0,0) model results 

in many of the largest errors, including underestimates of nearly 25 percent in September 

and October. 

 

Figure 7: Seasonal means for Patuxent models 
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Figure 8:  Season standard deviations for Patuxent models 
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Figure 9:  Error in the monthly means for Patuxent models 
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Figure 10:  Error in the monthly standard deviation for Patuxent models 
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Another way to test model accuracy is by measuring forecast error.  The models can be 

used to forecast flows any number of timesteps into the future.  This was done with the 

four remaining models in three different ways.  First, each model was used to generate 

one-month ahead forecasts through the portion of the historical record that was used to 

calibrate the models (i.e., 1914-2003).  Second, also with the data used for calibration, 

each model was used to generate forecasts for 12 months out.  Finally, each model was 

used to generate one-month ahead forecasts for the portion of the historical record not 

used in calibration (Jan. 2004-Aug 2006).  Table 4 shows the resulting error rates for 

each type of forecast and each model.  For comparison, Table 4 also include errors for a 

naïve forecast model, which assumes historical average conditions for each month as the 

forecast. 

 

Table 4: Forecast errors for four ARIMA Models 

Model 

1-month 
forecasts1914-
2003, RMSE* 

12-month 
forecasts 
1914-2003, 
RMSE 

1-month 
forecasts 
2004-2006, 
RMSE 

ARIMA(2,0,0) 1576.8 1823.2 1899.6 

ARIMA(1,0,1) 1572.7 1815.1 2208.3 

ARIMA(2,0,1) 1569.9 1812.2 1906.0 

ARIMA(3,0,1) 1569.8 1812.7 1902.7 

Naive Forecast 1843.6 1845.9 1650.1 

*Root Mean Squared Error 

 



The differences in error rates between the models are quite small.  The ARIMA(2,0,0) 

results in the highest RMSE when used with the calibration data, but is actually the best 

model for forecasting recent flows (2004-2006).  The ARIMA(2,0,1) shows the opposite 

pattern—lower error rates for the calibration data, but higher errors for recent data.  In 

general, the differences between the models are small enough that this test is not very 

useful for choosing one over another. 

 

Relative error is also important for determining the accuracy of a model.  While the 

differences between these models are small, their error rates appear to be significant 

compared to average flows.  The mean absolute percentage error (MAPE) was calculated 

for each of the types of forecasts listed above.  MAPE is the average of the absolute 

values of the relative error of each forecast expressed as a percentage (Makridakis et al, 

2003).  Table 5 shows the MAPE for each model and forecast.  In addition, Table 5 

shows the forecast accuracy of the naïve model for comparison.  . 

 

Table 5: MAPE for four ARIMA Models 

Model 

1-month 
forecasts 
1914-2003, 
MAPE 

12-month 
forecasts 
1914-2003, 
MAPE 

1-month 
forecasts 
2004-2006, 
MAPE 

ARIMA(2,0,0) 36.1% 48.5% 43.5% 

ARIMA(1,0,1) 36.0% 48.2% 47.6 

ARIMA(2,0,1) 36.0% 48.1% 40.8% 

ARIMA(3,0,1) 35.9% 48.1% 43.3% 

Naïve model 70.1% 69.9% -4.4% 

*Mean Absolute-Value Percentage Error 

 

As with RMSE, the differences between the models are small, but the results indicate that 

all of these models will include a significant degree of error when used for forecasting.  

For example, in a 12 month forecast, the average error for the 12 forecasted flows is 

nearly 50%.  These are significant error rates.  However, as will be described later in this 

report, the model selected for implementation will not be used for generating 

deterministic forecasts of exact streamflows into the future. Rather, it will be used 

stochastically to generate many potential streamflow sequences and the resulting statistics 

used to inform the risk analysis of various operational alternatives. The ARIMA models 

show a significant improvement over the naïve model in forecasting future flows and 

they adequately reproduce seasonal flow statistics when used to generate synthetic data. 

Model Selection 

Based on the results presented here, either the ARIMA(2,0,1) model or the 

ARIMA(3,0,1) model could reasonably be selected for implementation.  The test results 

presented above show that the differences between these two models is small.  Usually, 

the simpler model would be selected when performance is equivalent, which, in this case, 

would lead to implementation of the ARIMA(2,0,1) model.  However, analysis of 

synthetic data generated with the two models shows that the ARIMA(3,0,1) model tends 

to underestimate flows while the ARIMA(2,0,1) tends to overestimate flows.  

Underestimating flows when planning for drought preparedness and management 



represents a slightly more conservative approach.  Therefore, the ARIMA(3,0,1) is 

selected for implementation. 

Developing a New Refill Forecasting Tool 
 

Developing an ARIMA model for inflows to the Patuxent reservoirs was the first step in 

developing a new reservoir refill forecasting tool.  The ARIMA model helps predict 

potential inflows over the forecast horizon, but it must be combined with planned 

withdrawals in order to evaluate the risk of not meeting storage targets.  The complete 

tool should provide an intuitive way to evaluate and visualize the impact of different 

withdrawal patterns.  Excel is used as the platform for the refill forecasting tool, since 

most water managers are familiar with Excel and since an intuitive user interface could  

be developed.   

 

The following sections describe how ARIMA forecasts are incorporated into the 

spreadsheet tool, discuss how the model must be initialized with recent streamflow data,  

show how the tool can be used to evaluate various withdrawal alternatives, introduce the 

new spreadsheet tool and interface, and discuss next steps and conclusions.   

 

Using the ARIMA Model 

 

The model is initialized with monthly inflows over the last 12 months.  Flows for these 

last 12 months are known, either from USGS data downloaded automatically by the 

spreadsheet or from other data as preferred by the user (see description of initialization 

data below).  This 12-month initialization is important for two reasons.  First, the purpose 

of using an ARIMA model for predicting reservoir refill is to forecast potential inflows 

given current and recent conditions.  Initialization provides the model with data 

describing current and recent conditions.   

 

Second, some period is selected for the initialization (e.g., 12 months back as in this 

application) and values prior to that period are unknown to the model and must take on 

assumed values, usually average flows for those months.  The longer the initialization, 

the less the impact assumed initial values have on the results.  Both 12-month and 24-

month initialization periods were tested for this model. .  Comparison of the two 

initialization periods showed very small differences between the two.  Predictions for 

reservoir refill were almost exactly the same. Predictions of potential inflows differed by 

less than one percent, with the 12-month initialization consistently resulting in slightly 

lower predicted flows. Therefore, the 12-month initialization is sufficient and will be 

used for this model. 

 

Once the model is initialized, it can be used to calculate an ensemble of potential inflows.  

The initialized Patuxent inflow ARIMA model is used to stochastically generate 1,000 

independent inflow sequences over the next 12 months.  The term ε(t) in the 

ARIMA(3,0,1) equation below represents the random component in the ARIMA process 



and it is equivalent to the residuals from the fitting process.  

 
The residuals from the fitting process were analyzed and shown to have a mean of 

0.00303 and a standard deviation of 0.76220.   Therefore, the stochastic generation of 

inflow sequences is done using the random number generator in Excel to create 1,000 12-

month sequences of independent and normally distributed random numbers with mean 

and standard deviation equal to those of the residuals from the ARIMA fitting process.  

Since each random number sequence is different, they can be used in the equation above 

to produce inflow sequences that are distinct and independent.  

 

Table 6 demonstrates a portion of this process, showing the calculation of two sets of 

potential inflows.  The calculations demonstrated in Table 6 start from the current time 

step and do not show the initialization calculations.  The flows from the three months 

immediately prior to the start of the calculations shown in the table are known values 

(3302, 4210 and 2907 MGD).  The values for ε(t) are generated normal random numbers 

with mean 0.00303 and standard deviation 0.76220.  Timestep one is equal to the first 

forecast month.  In time step one, the value for ε(t-1) comes from the initialization 

process—it is the calculated error of a flow forecasted for time zero.  Values of ε(t-1) in 

timesteps two through six are equal to the generated ε(t), but lagged by one time step.  

Each generated flow becomes an independent variable (i.e., a previous flow) in 

subsequent timesteps.  Figure 11 shows a plot of five different inflow sets, including the 

two shown in Table 6. 

 

Table 6: Sample of ARIMA(3,0,1) inflow generation 

*Note that flows for t-1, t-2  and t-3 are log-transformed and standardized before using them in the 

ARIMA(3,0,1) equation.   

**Output of the equation is also standardized and log-transformed.  Multiplying by the monthly standard 

deviation, adding the monthly mean, and taking an exponential results in the values shown in the table. 

***Observed actual flows 

†The first value for ε(t-1) comes from the initialization process. 

 

 T Flow at t-1 

(MG)* 

Flow at t-2 

(MG)* 

Flow at t-3 

(MG)* 

ε(t), generated from 

Normal (0.00303, 0.76220) 

ε(t-1)   Generated flow 

for time=t 

(MG)** 

1 3302*** 4210*** 2907*** -0.22581 0.253061†  4187.7 

2 

4187.7 

3302*** 4210*** 

-0.97082 

-0.22581 

 2604.6 

3 2604.6 4187.7 3302*** 0.189203 -0.97082 2977.9 

4 2977.9 2604.6 4187.7 0.975958 0.189203 3857.7 

5 3857.7 2977.9 2604.6 0.916413 0.975958 4032.3 

In
fl
o
w
 S
et
 #
1
 

6 4032.3 3857.7 2977.9 1.324024 0.916413 6864.7 

1 3302*** 4210*** 2907*** 0.034845 0.253061† 4653.8 

2 4653.8 3302*** 4210*** -0.49549 0.034845 3408.7 

3 3408.7 4653.8 3302*** -0.41587 -0.49549 2600.9 

4 2600.9 3408.7 4653.8 0.650382 -0.41587 3132.6 

5 3132.6 2600.9 3408.7 0.615111 0.650382 3028.6 

In
fl
o
w
 S
et
 #
2
 

6 3028.6 3132.6 2600.9 0.35091 0.615111 2708.7 

Z(t) =  1.12258 * Z(t-1) – 0..1785 * Z(t-2) + .036 * Z(t-3) + ε(t)  –  .62765 * ε(t-1). 



Initialization Data 

As noted above, the model requires recent flows for initialization.  The spreadsheet tool 

was designed to automatically download appropriate USGS data for the Patuxent River 

near Unity, MD.  These daily data are adjusted to account for drainage area and other 

characteristics so that they better represent inflows to the Patuxent reservoirs.  They are 

then aggregated into monthly values and displayed on the main interface of the 

spreadsheet tool.  The user can elect to use these USGS-based recent inflows or inflows 

based on other information, such as WSSC’s recorded reservoir inflows.  If the user 

elects to use data other than the USGS-based data provided by the model, they can enter 

the new numbers in a new column and the model will automatically use those for 

computations. 

 

Figure 11: Six Example Stochastic Inflow Sets, illustrating how the ARIMA model is 

used to generate an ensemble of potential future streamflow  
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Evaluating Withdrawal Alternatives 

The spreadsheet tool allows the user to set withdrawals from the Patuxent reservoirs for 

each of the next 12 months.  Withdrawals should be set in order to meet the operational 

criterion described in the introduction to this report—i.e., that the reservoir reach 90% 

full by June 1 95% of the time.  Meeting that refill target 95% of the time is equivalent to 

meeting it with a 95% probability in any given year. The refill spreadsheet tool provides 

two ways to illustrate whether this criterion is met. One is that the tool shows a plot of 

forecasted storage through next May under an estimate of the five percent probability 

Observed Flows 

Generated Flow Sequences 



event.  The other reports the percentage of inflow sets for which the storage target is 

reached given the withdrawals set by the user. 

 

In the first case, the five percent probability event is identified according to reservoir 

storage at the end of the forecast horizon (i.e., end of May storage, which is equivalent to 

June 1).  The inflow set that results in the 950
th
 largest storage on June represents the fifth 

percentile event, or five percent probability event.  That inflow set associated with fifth 

percentile storage can change as the user modifies the reservoir withdrawal pattern.  This 

can lead to sudden shifts in the plot of storage as the users tries to identify a sustainable 

withdrawal pattern.  In order to prevent this kind of shift, the tool uses an average of 15 

traces as the five percent probability event.  Specifically, the tool identifies the set of 

traces with resulting storage ranked 943 through 957 (i.e., the 950
th
, along with the seven 

ranked just above it and the seven just below it).  The traces included in this set of 15 

occasionally may change as the withdrawals are changed, the but the averaging acts as a 

smoothing process and prevents sudden shifts in the storage plot.  This allows the tool to 

behave more intuitively while still providing a good estimate of the five percent 

probability event.  The plot also shows storage under the median case and a similar 

process is used for those calculations. 

 

In addition to plotting storage for the five percent probability event, the tool reports the 

percentage of years for which the 90% full storage criterion is met.  As mentioned above, 

storage for the forecast horizon is calculated for each inflow set.  This tool then calculates 

the number of years for which storage reaches or exceeds 90% of capacity by June 1.  If 

storage reaches 90% full in 95% of the stochastic inflow sets, each of which is equally 

probable given current conditions, then there is a 95% probability of meeting the storage 

target by June 1. 

 

The graphical interface 

All these calculations and algorithms were brought together in a spreadsheet tool.  The 

tool includes a graphical interface intended to make the tool more user-friendly (see 

Figure 12).  The interface includes basic instructions with some color coding to point the 

user to the right places.  There is also a link to a more detailed description of the model.  

The user inputs current storage in the reservoirs (as of the end of the previous month) and 

the minimum allowable release from the reservoirs to the lower Patuxent River.  Recent 

inflows based on USGS data are shown on the bottom left.  These USGS-based numbers 

are used by the model unless the user opts to enter other values in the adjacent column. 

Withdrawal rates can be typed in the green column manually, or alternatively they can be 

set by using the slider bars to the right of the green column.  The model calculations are 

slow, so the automatic calculation feature in Excel is disabled.  Therefore, after making 

all the desired changes for the various months, the user must click on the “Recalculate 

Storage” button to see the results.  Finally, the model alerts the user if the USGS data are 

out of date.  If so, clicking on the “Download New USGS Data” button automatically 

brings in updated information from the USGS website. 



Next Steps 

The ARIMA(3,0,1) fit to the Patuxent reservoir inflows may be improved in the future.  

As noted above, the distribution of the flow data is skewed and required transformation.  

The log-transform resulted in an approximately normal distribution as seen in Figure 3 

above.  However, according to the Kolmogorov-Smirnov test, the log-transformed data 

are not adequately described by a normal distribution.  The type of ARIMA calibration 

described here requires the data to be normally distributed, so the fact that the 

transformed data failed a test for normality means that there may be some bias in the 

ARIMA model.    This can be addressed in future efforts by applying other 

transformations to the flow dataset to create a normally distributed dataset.  A different 

transformation was used for the Occoquan analysis (see below) because in that case the 

data were more severely skewed. 

 

Some factors in the evaluation process can be explored further.  For example, a maximum 

lag of 10 time steps was used in computing the Porte-Manteau Q-statistic.  This was an 

arbitrary choice and other lags might produce different results.   Also, additional analysis 

of forecast error might provide useful information for model selection.  Additional 

analysis might include examining seasonal and longer patterns of forecast error.  For 

example, it might be useful to know whether there are differences between the models in 

their ability to forecast flows during certain parts of the year or during particular dry or 

wet periods. 

Conclusions 

The incorporation of an ARIMA model to forecast probabilities of future Patuxent and 

Occoquan Reservoir (summarized in subsequent sections of this report) inflows provides 

a useful management tool for ICPRB CO-OP and the WMA water suppliers.  The tool 

can be used to better understand the probabilities of reservoir refill given current 

conditions, and the consequences of various withdrawal alternatives.  The tool is 

especially useful in dry periods, since autocorrelation in streamflow will result in lower 

estimates of future flow given current low flow conditions.  Thus, the tool is 

appropriately conservative and better reflects future scenarios than does a traditional 

position analysis based on historical inflows alone.  The tool is especially useful because 

the water manager can automatically update the inflows with use of a simple update 

button and test various withdrawal scenarios in the easy to use interface.  The ARIMA 

forecasting takes place automatically in the background, and requires no specialized 

knowledge of ARIMA modeling.   

 

The Patuxent and Occoquan reservoirs are an important part of the Washington D.C. area 

water supply system.  The better water managers can predict refill of these reservoirs the 

more reliable the water supply for the region. Previous tools proved useful during drought 

exercises and for regular operations.  The analysis described here and the tool developed 

based on that analysis should offer another improvement for regional reservoir water 

supply management. 

 

 

 



Figure 12: Interface of the New Reservoir Refill Tool 

 



Occoquan Reservoir Refill 
 

A similar tool was developed for Occoquan Reservoir.  Occoquan’s watershed is much 

bigger than the Patuxent’s and the statistical properties of the inflow data are different.  

One significant difference in developing the Occoquan ARIMA model was that 

additional steps were needed to normalize the Occoquan data.  The development of the 

Occoquan refill prediction tool is briefly described below. 

Methods and Data 

A dataset for Occoquan inflows was developed by ICPRB (Hagen and Steiner, 1998a) for 

modeling and planning purposes using similar methods to those described for the 

Patuxent Reservoir.  The resulting dataset covers 1929 through 2002.  Data for January 1, 

1930 through December 31, 1999 were used for the work reported here.  The dataset was 

extended though 2006, resulting in a seven-year dataset (2000-2006) for model 

verification.  ICPRB’s daily time series of inflows was aggregated to create a monthly 

time series of inflows.  Figure 13 shows the monthly hydrograph for Occoquan inflows. 

 

Figure 13: Occoquan inflow hydrograph 
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Normalization 

As with the Patuxent data, Occoquan inflows are highly skewed (see figure 14).  

Unfortunately, log-transformation of Occoquan inflows does not produce a sufficiently 



normal distribution (see Figure 15).  Log-transformation of Occoquan inflows results in a 

distribution with a skew of -0.48197 Other transformations were investigated in order to 

produce to a sufficiently normal distribution.  

 

Figure 14: Histogram of monthly Occoquan inflows 

0

10

20

30

40

50

60

74
97

57

19
44

1

29
12

5

38
80

9

48
49

2

58
17

6

67
86

0

77
54

4

87
22

7

96
91

1

10
65

95

11
62

79

Flow Bin (MGD)

F
re
q
u
e
n
c
y

 
 

 

Figure 15: Skewed histogram of log-transformed Occoquan inflows 

0

5

10

15

20

25

30

4.3 5.1 5.8 6.6 7.3 8.1 8.8 9.6 10.3 11.1 11.8

Log flow

F
re
q
u
e
n
c
y

 
 

 

 

 



One common method is the Box-Cox transformation: 

 

 

  

 

 

where  Y(t) is the Box-Cox transformed flow at time t 

 F(t) is the flow (untransformed) at time t 

 λ is the transformation parameter. 

 

In the Box-Cox transformation, the transformation parameter λ should be set so that the 

resulting distribution is as close to normal as possible.  A simple optimization model was 

used to minimize the skew of the transformed data by changing λ. The optimal value of λ 

was found to be .18019 resulting in a skew that is very nearly zero.  Figure 16 shows the 

histogram of the transformed data with λ=.18019.  The resulting distribution is 

approximately normal.  The transformed data were standardized as described above to 

create a series of data with a unit normal distribution.  The standardized data were used in 

the ARIMA fitting process. 

 

The ACF and PACF of the transformed and standardized Occoquan inflow data are 

shown in figures 17 and 18. The Occoquan data show positive and significant 

autocorrelations for the first 6 lags (excluding lag 0), with a rapid decay in the strength of 

the correlations.  The PACF shows significant correlations for only lags 1 and 2. The 

ACF and PACF suggest ARIMA(2,0,0) as a starting point for calibrating and comparing 

candidate models.  Several models were calibrated and compared.  The results are 

discussed below. 

 

 Figure 16: Histogram of transformed data with one value for λ 
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Figure 17: ACF of transformed and standardized Occoquan inflows 
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Figure 18: PACF of transformed and standardized Occoquan inflows 
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Model Calibration and Comparison 

Several ARIMA models were calibrated and evaluated using the same methods that were 

used for the Patuxent ARIMA model. Tables 7 shows the coefficients and AIC values for 



six models calibrated for the Occoquan data. Table 8 shows the results of the Porte-

Manteau test for the same models. 

 

Table 7: Coefficients and AIC for Several Potential ARIMA models 

Model φ1 φ2 φ3 θ1 θ2 AIC 

ARIMA(1,0,0) .43098 n/a n/a n/a n/a 2198.44 

ARIMA(2,0,0) 0.37540 0.12902 n/a n/a n/a 2184.74 

ARIMA(3,0,0) 0.37134 0.11634 0.03206 n/a n/a 2183.93 

ARIMA(1,0,1) 0.68667 n/a n/a 0.32235 n/a 2184.51 

ARIMA(2,0,1) 0.84923 -0.08053 n/a 0.48096 n/a 2184.46 

ARIMA(2,0,2) 1.60745 -0.62939 n/a 1.25044 -0.29168 2182.10 

 

Table 8: Porte-Manteau results for several ARIMA models 

Model Q Statistic Chi-squared Critical Value Pass/Fail  

ARIMA(1,0,0) 25.12 16.92 Fail 

ARIMA(2,0,0) 6.16 15.51 Pass 

ARIMA(3,0,0) 5.47 14.07 Pass 

ARIMA(1,0,1) 4.43 15.51 Pass 

ARIMA(2,0,1) 3.91 14.07 Pass 

ARIMA(2,0,2) 4.30 12.59 Pass 

 

ARIMA(1,0,0) is clearly inferior based on AIC and Porte-Manteau so it is eliminated 

from further evaluation. 

 

Table 9 shows statistics for synthetic flows that were stochastically generated using the 

five models still under consideration.  The statistics for two of the models—

ARIMA(2,0,0) and ARIMA(2,0,1)—deviate from the statistics of the recorded dataset 

considerably more than the other models.  Since the model will be used to stochastically 

generate streamflow sequences, the results shown in Table 9 suggest that the 

ARIMA(2,0,0) and ARIMA(2,0,1) models may be inadequate for the refill forecasting 

tool. 

 

In addition to summary statistics, the seasonal patterns of the generated flows were 

compared to the seasonal patterns of the recorded dataset. Figures 19-22 show charts of 

the monthly means, standard deviations and errors.  The figures show that all the models 

deviate from actual flow patterns at various times.  The ARIMA(2,0,1) model tends to 

underestimate mean flows through a greater portion of the year and to a greater degree 

than the other models.  With only a few exceptions, the ARIMA(2,0,2) model tends to 

have smaller errors than the other models for both monthly means and standard 

deviations. What is most clear from Figures 20 and 21 is that Occoquan inflows are more 

difficult to model as an ARIMA process than Patuxent inflows—the errors for the 

Occoquan models are generally much larger than the errors for the Patuxent models. 

 

 

 

 



Table 9: Statistics for synthetic datasets vs historical 

Model Mean flow % difference 
St Dev 
Flow % difference 

Recorded Dataset (1930-1999) 11386.6 n/a 12923.2 n/a 

ARIMA(2,0,0) 12778.75 12.23% 14988.38 15.98% 

ARIMA(3,0,0) 11964.73 4.52% 13580.5 5.09% 

ARIMA(1,0,1) 12412.21 8.57% 12976.65 0.41% 

ARIMA(2,0,1) 10019.98 -11.01% 11262.58 -12.85% 

ARIMA(2,0,2) 11204.34 -1.82% 12089.41 -6.45% 

 

Figure 19: Monthly mean flows 
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Figure 20: Monthly standard deviations 
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Figure 21: ARIMA Model Errors: Monthly mean flows 
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Figure 22: ARIMA Model Errors: Monthly Standard Deviations 
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The three models with favorable results in Table 9 were tested for forecast error.  Table 

10 shows 1-month and 12-month RMSE using the calibration data (1930-1999) and 1-

month RMSE for 2000-2006 flows.  Table 11 shows mean absolute percentage errors for 

the same three types of forecasts. Both Tables 10 and 11 include forecast errors for the 

naïve model for comparison. 

 

 

Table 10: Forecast errors for four ARIMA Models 

Model 

1-month 
forecasts, 
1930-1999, 
RMSE* 

12-month 
forecasts, 
1930-1999, 
RMSE 

1-month 
forecasts, 
2000-2006, 
RMSE 

ARIMA(3,0,0) 11532.2 12061.8 3946.1 

ARIMA(1,0,1) 11423.1 12041.8 3977.5 

ARIMA(2,0,2) 11444.9 12471.4 3866.6 

Naive Model 11691.8 11686.6 12194.0 

*Root Mean Squared Error 

 

 



Table 11: MAPE for three ARIMA Models 

Model 

1-month 
forecasts, 
1930-1999, 
MAPE* 

12-month 
forecasts, 
1930-1999, 
MAPE 

1-month 
forecasts, 
2000-2006, 
MAPE 

ARIMA(3,0,0) 109% 143% 126% 

ARIMA(1,0,1) 105% 142% 127% 

ARIMA(2,0,2) 102% 160% 122% 

Naïve Model 274% 275% 348% 

*Mean Absolute-Value Percentage Error 

 

The three ARIMA models result in similar forecasting errors.  The only notable 

difference is that the ARIMA(2,0,2) model results in considerably higher errors (both 

RMSE and MAPE) for the 12-month forecast than the other two models.  This 

complicates model choice for the Occoquan because the ARIMA(2,0,2) model produced 

more accurate synthetic data, especially in terms of monthly patterns.   

 

Two other things are worth noting about the results shown in Tables 10 and 11.  First, the 

MAPE values confirm the difficulty of modeling Occoquan inflows as an autoregressive 

process.  These models result in MAPE values that are more than twice as large as the 

MAPE values for the Patuxent models.  The primary reason is that the Occoquan is a 

“flashier” watershed, with a much higher ratio of standard deviation to mean (1.135 for 

the Occoquan and .729 for the Patuxent).   

 

Second, the MAPE values for the naïve model appear to be inconsistent with the RMSE 

values.  This is especially true for the 12-month forecast where he naïve model results in 

smaller RMSE values than the ARIMA models, but much larger MAPE values.  This can 

be explained by analyzing the distribution of errors for the naïve model and one of the 

ARIMA models.  Figure 23 shows the histogram of errors for the naïve model and figure 

24 shows the histogram of errors for the ARIMA(2,0,2) model.  The ARIMA(2,0,2) 

model results in a greater number of large errors, especially large negative errors.  This 

will push up the RMSE value because the errors are squared.  However, the errors for the 

ARIMA model are centered closer to zero than are the errors for the naïve model.  This 

means that positive and negative errors will balance out more for the ARIMA model, 

reducing its MAPE value.  Indeed, the median error for the naïve model is much larger 

(3,253 versus 11) and a far greater percentage of its errors are positive (67% versus 50%).   

 



Figure 23: Histogram of errors for the naïve model 
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Figure 24:  Histogram of errors for the ARIMA(2,0,2) model  

0

0.01

0.02

0.03

0.04

0.05

0.06

-1
40

00
0

-1
20

00
0

-1
00

00
0

-8
00

00

-6
00

00

-4
00

00

-2
00

00
0

20
00

0

40
00

0

R
e
la
ti
v
e
 f
re
q
u
e
n
c
y

  
 

It is worth noting that Figure 24 helps confirm the validity of the ARIMA(2,0,2) model.  

A good forecast model should have minimal bias—i.e., the distribution of its errors 

should not be skewed and should show central tendency near zero.  Figure 24 shows that 

this is the case fro the ARIMA(2,0,2) model, though there is a slight negative skew.  The 

error distributions for the ARIMA(3,0,0) and ARIMA(1,0,1) model are similar. 

 

Model Selection 

The ARIMA(2,0,2) model was selected for implementation in predicting Occoquan 

Reservoir refill.  The results of the ARIMA(3,0,0) and ARIMA(1,0,1) models were 

similar, but the ARIMA(2,0,2) was selected for two primary reasons.  One, it resulted in 

smaller forecast errors, especially in the 2000-2006 verification flows.  Second, flows 

stochastically generated with the ARIMA(2,0,2) model reproduced seasonal patterns 

better than the other models.  These are important factors since the model is used to 

stochastically generate potential inflow series given recent conditions. 



 

Occoquan Refill Forecasting Tool 

The Occoquan ARIMA model was implemented in a similar manner as the Patuxent 

model to create a refill forecasting tool.  The Occoquan tool functions similarly and has a 

similar interface.   

 

The USGS gage data automatically downloaded by the tool are for Cedar Run near 

Catlett, Virginia.  This gage represents a small portion of the Occoquan watershed (93.4 

square miles versus 591.9 for the entire Occoquan watershed) and so the area adjustment 

method is applied to generate a series of inflows appropriate for the ARIMA model.  This 

result in adequate data for most situations.  However, adjusted Cedar Run flows tend to 

overestimate actual Occoquan inflows during very dry situations.  Therefore, during 

drought situations, it may be beneficial to initialize the Occoquan model with computed 

inflows based on recorded storage, withdrawals, and releases.  The computed data can be 

entered manually to replace the USGS data for generating flow forecasts. 

 

Other than the subtle difference regarding initialization data mentioned above and the fact 

that they use different ARIMA models, the Occoquan and Patuxent refill forecasting 

tools are virtually identical and should be used in a similar manner.  The Occoquan 

interface is configured a little differently, but this does not affect the functioning of the 

model.  The Occoquan interface is show in Figure 25 for information. 

 



Figure 25: The Occoquan Reservoir Refill Forecasting Tool interface 
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